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1.0 INTRODUCTION

In the past few years texture has proved to be a powerful tool in the

fields of pattern recognition, remote sensing, and digital scene analysis.

The earlier works on image segmentation were based primarily on tonal or

gray level properties, mainly because they were easier to understand and

implement. The use of texture analysis as an aid to segmentation came

about because of the limited success with the earlier techniques. Also,

researchers soon realized that not only does texture play an important

role in human visual perception, but it is also intrinsically linked to

the basic structure of a scene. This last point is important, and will

be explored in more detail later.

Despite the extensive amount of research in the field, texture is

still poorly understood because a precise definition of texture is elu-

sive. There are many descriptive terms available, e.g., coarse, fine,

granulated, linear, but nothing that captures texture properties precisely.

In other words, our vocabulary for texture is only qualitative and not

quantitative. However, this has not deterred researchers in making use

of texture features that they have found suitable for their work. A

general semantic formulation which would connect different approaches is

what is lacking.

Basically, texture is an organized area phenomenon (Haralick, 1979).

When it is decomposable it has two basic dimensions. The first is for

describing the primitives out of which the image texture is composed,

and the second is for the spatial dependence or interaction between the

primitives of an image texture. The first dimension is concerned with

tonal primitives or local properties while the second deals in the

spatial organization of the tonal primitives. Tonal primitives are

1



regions with tonal properties. The tonal primitive can be evaluated in

terms of its average tone, or maximum and minimum tone of its region.

Its region is a maximally connected set of pixels having a given tonal

property. Properties of regions can be size and shapes. The tonal primi-

tive includes both its gray tone and tonal region properties.

in image texture is characterized by the number and types of its

primitives and the spatial organization or layout of its primitives.

The spatial organization may be random, may have a pairwise dependence

of one primitive on a neighboring primitive, or may have a dependence

of n primitives at a time. The dependence may be structural, probabil-

istic or functional (like a linear dependence).

These ideas of primitives and their attributes will be pursued

further, as they support the hypothesis that digital image texture is

characterized by the number and types of primitives and the spatial

relationship between these primitives.

To objectively use the tone and textural pattern elements, the

concepts of tonal and texture feature must be explicitly defined. With

an explicit definition, we discover that tone and texture are not inde-

pendent concepts. They bear an inextricable relationship to one another

very much like the relation between a particle and a wave. There really

is nothing that is only particle or only wave. Whatever exists has both

particle and wave properties and depending on the situation, the parti-

cle or wave properties may predominate. Similarly, in the image context,

tone and texture are always there, although at times one property can

dominate the other and we tend to speak of only tone or only texture.

Hence, when we make an explicit definition of tone and texture, we are

not defining two concepts: we are defining one tone-texture concept.

2
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The basic interrelationships in the torte-texture concept are the

following. When a small-area patch of an image has little variation of

tonal primitives, the dominant property of that area is tone. When a

small-area patch has wide variation of tonal primitives, the dominant

property of that area is texture. Crucial in this distinction are the

size of the small-area patch, the relative sizes and types of tonal

primitives, and the number and placement or arrangement of the disting-

-uishable primitives. As the number of distinguishable tonal primitives

decreases, the tonal properties will predominate. In fact, when the

small-area patch is only the size of one resolution cell, so that there

is only one discrete feature, the only property present is simply gray

tone. As the number of distinguishable tonal primitives increases

within the small-area patch, the texture property will dominate. When

the spatial pattern in the tonal primitives is random and the gray tone

variation between primitives is wide, a fine texture results. As the

spatial pattern becomes more definite and the tonal regions involve

more and more resolution cells, a coarser texture results (see Pickett,

1970).

According to Ehrich (1978), there are three problems of concern in

texture analysis. These are listed in order of increasing difficulty.

First, given a textured region, to which of a finite number of classes

does it belong? Second, given a texture region, how can it be described?

And third, given a scene, how can the boundaries between major textured

regions be established?

The first problem is one of discrimination and is in the most part

solvable. By suitably choosing the features relatively high success

4 rates have been achieved. The second deals with the structure of texture
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which is usually very complex. The use of primitives and their attributes
is one approach to this problem. Finally, the third deals with scene

analysis and segmentation. It is the most difficult as it incorporates

the first two problems and the interplay between them. In addition, para-

meters for levels of texture complexity and clustering have to be established.

The human visual system succeeds with this third problem because of its

excellent grouping mechanisms as well as the use of global and semantic

information about the image. These latter techniques are difficult to imple-

ment on a computer, but future works in this field will have to incorporate

them.

In this report we would like to look at some techniques that deal with

the second and third problems mentioned above. These methods, even though

they are powerful compared to previous techniques, are still limited. This

is because none of these processes use semantic information in the image.

Incorporation of this knowledge would be the next step in a more general

and complex analysis scheme. One way to do this is given in Haralick and

Shapiro (1979).

In order to give the methods investiqated a proper perspective, we

begin with a review of some basic approaches to texture analysis. This

is done in Chapter 2. Chapter 3 discusses the techniques investigated.

It contains a description of the primitives used and reasons for their

selection. Also discussed are algorithms to compute these primitives.

Chapter 4 discusses some experiments that were performed. In

Chapter 5 we look at the attributes of these primitives and the general

algorithm structure to extract these properties. This section also dis-

cusses the clustering philosophy and techniques used. Chapter 6 includes

other related experiments carried out with the primitives of Chapter 3.

This is followed by conclusions and suggestions for further work.

4
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2.0 APPROACHES TO TEXTURE ANALYSIS

In the broadest sense there are two overlapping classes to texture

analysis techniques: structural and statistical. Actually all techniques

use both approaches to varying degrees. Structural usually defines the

primitives to be used. These can be descriptions of patterns in a texture

synthesis experiment or basic structural elements of an image. The statis-

tical methods are brought into play to describe the relationships between

the primitives. There are many ways to do this.

The classification of texture models given in Haralick (1979) consists

of autocorrelation functions, optical transforms, digital transforms, auto-

regressive models, textural edgeness, gray level runlengths, syntactic,

structural element, gray tone co-occurrence, and min/max extrema per unit

area. The first three deal in some way with spatial frequency. Spatial

frequency is related to texture because fine texture is rich in high spa-

tial frequency, while coarse texture is rich in low spatial frequency.

Thus, by working in the frequency domain texture information can be extrac-

ted. This same idea is used in measuring texture in terms of edgeness per

unit area. Fine textures have many edges per unit area while coarse ones

have fewer (Rosenfeld and Troy, 1970; Rosenfeld and Thurston, 1971). An

experiment was performed which compared the edgeness per unit area to the

approaches investigated. This is discussed later.

The structural element approach uses a matching procedure to detect

the spatial regularity of shapes called structural elements in a binary

image. In a process similar to template matching, the element is moved

across the image. The image is eroded wherever a match does not occur.

Textural features can be obtained by counting the number of cells eroded.

Crucial to this approach are the shape of the element and direction of

5.. " - ... w . . . l



the scan. When the structural elements are single resolution cells, the

information provided by this approach is the autocorrelation function.

By using larger and more complex shapes, a more generalized autocorrela-

tion can be computed. The main power of the structural element approach is

its emphasis on shape, something that not many other approaches consider.

So far, however, it has only been applied to binary images (Serra, 1973).

Autoregressive techniques involve using linear estimates of a pixel's

gray tone given its neighborhood. Coarse textures then correspond to

similar coefficients while fine texture areas will show a wide variance in

the coefficients (Read and Jayaramurthy, 1972; McCormick and Jayaramurthy,

1975).

Gray level runlengths method by Galloway (1974) uses gray level run-

lengths as primitives and computes features in a manner similar to the

spatial co-occurrence matrix method.

Syntactic approaches to texture deal mostly with synthesizing textures

by phrase structure grammars (Lu and Fu, 1978).

The last two: gray tone co-occurrence and min/max extrema density

are more related to the research done and thus are presented in more

detail.

2.1 Gray Tone Co-Occurrence

Gray tone co-occurrence is the most explored technique in texture

analysis today. First proposed by Rosenfeld and Troy (1970) and Haralick

(1971), it has proved its worth by many other researchers. The basic

reason for this is that it is a second-order statistic and thus takes into

account second-order effects. As such, this kind of measure is called a

strong texture measure.

6



To quantify our descriptions, some basic definitions are needed, and

are given below.

Definition 2.1.1

Let Zr = {1,2,...,Nr} and Zc = {1,2 ....Nc} be a set of row and

column indices. Let G = {1,2, ..., N I be a set of gray levels. Then the
g

digital image I, I:Zr x Zc -) G is a function which assigns to each pixel

(picture element) a gray tone value. The pixel location is referred to

by an ordered pair (k,z) e Z x Z and its gray tone is I(k,z).r c
A first-order statistic of the gray tones is any function of the

number of times each different gray level occurs in the image. One such

function is the gray level histogram of the image. Sometimes segmentation

can be performed on the basis of a histogram. For example, if an image

contained a set of pixel values from two different populations, the histo-

grams would be bimodal. A threshold based on the valley in the histogram

could yield the two different regions. Chow and Kaneko (1972) used this

technique to find edges in lung X-ray images. However, segmentation based

on histograms on very complex images is usually not very good.

The co-occurrence matrix, a second-order statistic, essentially

measures the relative frequency P.. of gray tone "i", occurring next to

gray tone "j". The "next to" characterizes the spatial relationship

between the primitives. It is usually specified by a distance between

primitives and orientation.

Definition 2.1.2

Let G be the set of gray tones of I and R a binary relation pairing

cells in Zr x Zc which are in the desired spatial relation, then the

co-occurrence matrix is a function P, P:G x G - (0,1) given by:

7



P(i,j) #(((a,b),(c,d)) e R I I(a,b) - i and I(c,d) = j}
#R

That the co-occurrence matrix contains more information than the

histogram is illustrated by the two simple images in Figure 2.1.1. While

the histograms are the same, the co-occurrence matrices are not, and the

images reflect the different texture structure.

Based on the co-occurrence matrices, Haralick et al. (1973) computed

different features which were very successful in discriminating between

textured images.

Another way to use the co-occurrence matrices is to generate a tex-

tural transform image based on them (Haralick, 1975). This is an image

which indicates how common the texture pattern is in and around each reso-

lution cell of the original image. It gives a "measure" of texture for

each resolution cell. As lot of the work to be described involved gen-

eration of texture transforms of different types, so transforms based on

co-occurrence counts were also created for comparison. Examples of these

are given later. First let us examine the structure of this transform.

We wish to construct a transform image J such that the gray tone

J(i,j) at resolution cell (i,j) in image J indicates how common the

texture pattern is in and around resolution cell (i,j) of image I.

For analysis of the micro-texture, the gray tone J(i,j) can be a

function of the gray tone I(i,j) and its nearest neighbors.

J0i1j) = f(I(i-l1j-l), I10-l,j), I(i-l,j+l), I(i,j-l), IOi,)

I(i~j+1), I1i+lj-l), I(i+lj), I(i+1,j+l))

Let us assume that this function f is an additive effect of horizontal,

right diagonal, vertical, and left diagonal relationships. Then:

8
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Figure 2.1.1. The difference between the first- and second-order statistics
histograms and co-occurrence matrices is shown.
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J(ij) fl(I(i,j-1), I(i,j), I(ij+1)) (horizontal)

+ f2 (I(i+1,j-1), I(i,j), I(i-lj+l)) (right diagonal)

+ f3 (l(i-1,j), I(i,j), I(i+1,j)) (vertical)

+ f4 (I(i+lj+l), I(i,j), l(i-lj-1)) (left diagonal)

But since we do not distinguish between horizontal-left and horizontal-

right, or right diagonal up-right and right diagonal down-left, or

vertical up and vertical down, or left diagonal up-left and left diagonal

down-right, the functions fl, f2 f39 and f4 have additional symmetries.

Assuming the spatial relationships between which we do not distinguish

contribute additively, we obtain:

J(i,j) = h1(l(ij), I(i,j-l)) + hl(I(i,j), I(i,j+1)) (horizontal)

+ h2(I(i,j), I(i+l,j-1)) + h2(I(i,j), I(i-lj+l)) (right diagonal)

+ h3(I(ij), I(i-lj)) + h3(I(i,j), I(i+l,j)) (vertical)

+ h4 (1(i,j), I(i+l,j+l)) + h4 (I(i,j), I(i-lj-1)) (left diagonal)

where the functions h1 , h2, h3, and h4 are symmetric functions of two

arguments.

Since we want the h functions to indicate relative frequency of the

gray tone spatial pattern, the natural choice is to make each h the co-

occurrence probability corresponding to the horizontal, right diagonal,

vertical, or left diagonal spatial relationships.

This concept of textural transform can be generalized to any spatial

relationship in the following way and is defined below.

Definition 2.1.3

Let P be the co-occurrence matrix for an image I as defined above.

The textural transform J, J:Z r x Zc 4. - of image I relative to

function f is defined by:

10
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J(rc) F # f[P(I(r,c), I(a,b))]
(a,b) e R(r,c)

Assuming f to be the identity function, the meaning of J(r,c) is

as follows. The set R(r,c) is the set of all those resolution cells in

Zr x Zc in the desired spatial relation to resolution cell (r,c). For

any resolution cell (a,b) e R(r,c), P(I(r,c), I(a,b)) is the relative

frequency by which the gray tone I(r,c), appearing at resolution cell

(r,c), and the gray tone I(a,b), appearing at resolution cell (a,b)

co-occur together in the desired spatial relation on the entire image.

The sum

ZP(I(r,c), I(a,b))
(a,b) E R(r,c)

is just the sum of the relative frequencies of gray tone co-occurrence

over all resolution cells in the specified relation to resolution (r,c).

The factor Rc , the reciprocal of the number of resolution cells in

the desired spatial relation to (r,c), is just a normalizino factor.

* The transform described above is a resolution preserving transform.

That is, the resolution of the output image is the same as that of the

input image. While the transform image may not give rise to direct seg-

mentation, it can be an aid in multi-spectral clustering. When Haralick

(1975) included a textural transform band, he was able to improve his

classification accuracy by 11 percent.

2.2 Extrema Density

Rosenfeld and Troy (1970) and more recently Mitchell, Myers and

Boyne (1977) used the idea of number of extrema per unit area as a

texture measure. An extrema here means a relative or local minimum or

maximum gray tone.



Rosenfeld and Troy actually used extrema found in one-dimensional

horizontal scans and as such were not true extrema. The idea is that

the number of extrema per unit area goes up as the texture gets finer.

By marking the extrema and count'ig the number in a square window, each

pixel could be assigned a number giving a measure of extrema density.

This image could then be used to detect areas with fine or coarse texture.

Another way of using extrema density for texture discrimination was

by Mitchell et al. (1977). They chose some samples of textures like cork,

wood, water, sand, etc. The images were smoothed and extrema in hori-

zontal scans were computed. A threshold for the size (height) of the

extrema was then selected. By varying the thresholds, the number of

extrema of different sizes in each image was obtained. Plots were made

for extrema size versus the number of extrema detected for that size.

These gave characteristic curves for each of the texture types. The curves

differed in most part between textures of different types and could be

used for discrimination.

Other works using extrema have been by Mitchell and Carlton (1978)

and Ehrich and Foith (1976, 1978). These will be presented in later

sections.

12



3.0 IMAGE EXTREMA AS PRIMITIVES

The goal of our research was to study image extrema as primitives for

texture analysis. We begin with some reasons as to why these were chosen

as primitives and then give a formal definition for them. This is followed

by a discussion on reachability sets of the extrema, which is another primi-

tive that was examined. Finally we look at algorithms to determine the

primitives in a digital image.

In the last two chapters we had some examples of primitives. From

the simplest one, the pixel and its gray tone attribute, to not so intui-

tive ones such as gray tone runlengths and extrema pixels. The choice of

a primitive is crucial as it is the basic building block of the texture

model. The advantage of using a pixel lies in the fact that order is built

in and spatial relationships are easy to quantize. This manifests itself

in algorithms which require easy ordered scans of the image. However,

this geometrical ordering is also a constraint as it restricts us from

looking for primitives that were more connected with the structure of the

image than the pixel. Some investigators (Peucker and Douglas, 1975;

Toriwaki and Fukumura, 1978) in the last few years have been looking at

image structure from a topographical point of view. This is best visualized

if we represent the image three-dimensionally. Let the rows and columns be

the two horizontal axes and let the gray tone value be the height. The

image then takes on the perspective of mountains, valleys, plateaus, etc.

A gray tone extrema then corresponds to a mountain top or the bottom of a

valley. Images in this topographical view appear very complex. Figure

3.0.1 (taken from Ehrich, 1978) shows some small examples. Simple texture

patterns in the original image which would easily be processed by the eye

take on some very complex structures. From this point of view, it can be

13
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Figure 3.0.1. 3-D plots of some texture samples (from Ehrich (1978)).
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seen that primitives that relate more to the basic structure of the images

would be topographical entities like gray tone extrema, inflexion points,

connected components. Most of these can be obtained from 3 x 3 neighborhood

operators.

Toriwaki and Fukumura (1978) describe the structure (extrema, ridges,

etc.) of an image by two features known as the connectivity number and

radius of curvature of pixels. This link between connectivity properties

of an image and extrema strengthens the hypothesis that texture is

intrinsically tied to image structure.

Apart from the topographical structure, there is another good reason

to use extrema as primitives. They have the property of being invariant

under monotonic transformations of the gray tones. A monotonic decreasing

function F on an interval I means for all x, y E I: x < y - F(x) < F(y).

This means that if we put the gray tones through a monotonic transforma-

tion, our extrema locations will be unchanged. This proves useful, for

example, in extracting texture from objects, parts of which lie in a

shaded area.

Another view which connects extrema to the structure of an image is

provided by an automata defined by an image. There are many different

ways to do this and the definition given below uses the four neighborhood

(vertical and horizontal neighbors) of a pixel. The transition function

is defined by the relationships between gray tones of the pixel and its

neighbors. The states are the pixels of the image.

Definition 3.0.1
An automaton, A, defined by the image I is the triple (Zr x Z , 6),

where the input alphabet Z is the set {N,S,E,W} and the transition func-

tion 6 is the mapping 6:(Zr x Zc) x - Zr x Zc. It is defined as:

15



AS((i,j),N) = (i - 1, j), if I(ij) > I(i - 1, j)

= (i,j) otherwise

((i,j),S) = (i + I, j), if I(i,j) > I(i - 1, j)

= (i,j) otherwise

6((i,j),E) = (i, j + 1), if I(ij) > I(i, j + 1)

= (i,j) otherwise

M( ilj)W) = 0( i - 1), if I(i,j) > l(i, j -I

= (ij) otherwise

In automata terminology, the maxima pixels correspond to inaccessible

states or generators )f primaries. The minima pixels become the set of

strongly connected subautomata. Later on we will look at the reachability

sets of the extrema. These are called the descending and ascending com-

ponents of the maxima and minima, respectively. The descending components

correspond to states that occur in one primary only while the ascending

components map to states that occur only once in the set of sources of

the strongly connected subautomata (Bavel, 1968).

The automata is a very strong mathematical tool. The analogies

between the extrema of an image to some of the basic features of an auto-

mata, provides further evidence to their worth. As we shall see later,

this relationship between an image and its automata is exploited to

define the reachability sets of the extrema.

3.1 Definitions

Having introduced our primitives, we would like to formalize them.

This is done through a series of definitions of connectedness properties

and neighborhoods in an image. We begin with the four and eight neighbor-

hoods of a pixel.
16



Definition 3.1.1

Let Zr x Zc be a set of resolution cells. The 4-neighborhood (N4 )

of a pixel (i,j) is the set of cells:

N 4(ij) = .(m,n) E Zr x Zc I either m = j and j - I < n <_ + 1

or n = j and i - I <m< i + 1}

The 8-neighborhood (N8) of a pixel (i,j) is the set:

N8 (i,j) =(mn) E Zr x Zc I i -1 <m < i + 1 and

j - 1 < n < j + 1}

Next we look at a connected sequence of cells and equality paths.

Definition 3.1.2

Let S = <(m,,n0 (ml,n1)... ,(m K,n K)> be a sequence of cells in

Zr x Zc' S is said to be a 4(8)-connected sequence if and only if:

(mi'ni) E N4 (8 ) (mi - 1, ni - I ) ' i = 1,2,..

Definition 3.1.3

Let S be a connected sequence of cells as above. S is called an

equality path if ard only if:

I(mi'ni) = I(mi _I1 ni _ 1) ,  i = 1,2,....,K

An equality path is a connected sequence in which all pixels have the

same gray tone. No neighborhood was specified above. Unless otherwise

stated, we will assume an eight neighborhood, N8, or N from now on.

An equality path allows us to define the flat of a pixel.

17



Definition 3.1.4

The flat of a pixel (r,c), denoted by F(r,c) is set of pixels:

F(r,c) {(mn) there exists an equality path from (r,c)

to (m,n)

The flat of a pixel may be the pixel itself. All pixels have flats

and these are maximal in size as given by the definition above. A flat

is then a maximally connected region with the same gray level.

Given the flat of a pixel we can talk about the boundary pixels in

the flat. A boundary pixel of a flat is one which has at least one neigh-

bor which is not part of the flat.

Definition 3.1.5

Let F(r,c) be the flat for pixel (r,c). The set of boundary pixels

for the flat denoted by FB(r,c) is the set:

FB(r,c) = {(mn) e F(r,c) 3 (p,q) e N(m,n) andB(
(p,q) j F(r,c)}

The boundary pixels of a flat allow us to determine if the flat is

a relative extremum or not.

Definition 3.1.6

Let (r,c) be a pixel in Zr x Zc. F(r,c) is a relative maxima (minima)

if and only if for all (p,q) E FB(r,c):

l(p,q) > (j) I(m,n),V(m,n) c N(p,q)

The extrema or relative extrema are usually single pixels. However,

if the flat consists of more than one pixel, we call the entire set an

extremum of the image.

18



3.2 Reachability Sets

In this section we introduce an extension of the image extrema.

These are called the reachability sets or descending/ascending components

of the maxima/minima. Essentially the descending component of a maxima

is all the cells that can be reached in non-increasing gray tone paths.

Correspondingly, the ascending component of a minima are all the cells

that can be reached in non-decreasing gray tone paths. In the three-

dimensional perspective of the image of Section 3.0, this amounts to

traveling down from the mountain tops or going up from the valleys.

The computation of the ascending/descending components, reachability sets,

or transitive closures actually is a spatial clustering on the image.

It is in this framework that the following discussion is presented.

Later we will amend it to suit our needs, i.e., to get reachability sets

which will themselves be used as primitives.

The discussion below restricts itself to descending components of

maxima as they are intuitively easier to comprehend. A similar argu-

ment can be presented for ascending components of minima with the defini-

tion of the relation R below adjusted. The next two sections look at the

transitive closure of a gell and how to compute it.

3.2.1 Definitions

Spatial clustering can be thought of as grouping together units

which bear a similarity to each other and in addition have some spatial

relationship. For most cases, the formal definition of the cluster and

the algorithm which generates it go together. In this and the next few

sections, we look at this description.

We begin with the definition of the city block or Diamond distance

function.

19



* IDefinition 3.2.1

Let p be a digital distance function defined on digital image. p

is called the Diamond or City Block distance function if:

p((i,j), (k,m)) = Ji - kJ + J - ml

(ij), (k,m) e Zr x Zc

In most of what follows, we use this distance function to illustrate

the algorithm. As is discussed later, the algorithm is not restricted by

this distance function. It just happens to be one that is easy to visualize.

To characterize the clusters we define a binary relation R s (Zr x Z ) x

(Zr x Zc) by:

R = {((i,j), (k,m)) JI(i,j) > I(k,m), p((i,j), (k,m)) < a

where

(i,j), (k,m) E Zr X Zc

p = the digital distance function described above,
defined on Zr x Zc

For now we take e = 1. The relation R then takes on a meaning that

is readily discernable. For e = 1, R consists of ordered pairs of cells

such that going from the first to the second cell takes one step and the

gray levels are non-increasing. This description may be viewed as a path

of length I from the first to the second cell. e < 1 or e = 0 implies a

path of length zero, e.g., the element ((i,j), (i,j)) E R. In general,

a path of length n between two cells can be defined as below.

20

* --



Definition 3.2.2

Let (xoyo), (Xnyn) X Z c . Let <(xo,y0 ), (xiyl)...(Xn,yn)>be

a sequence of cells such that for all i e (1,2,... ,nI, ((xi _ 1, Yi - 1),

(xi,yi)) e R. Then the sequence <(x0 ,yo),(x1,y1)... (xnYn)> is called a

path of length n from (xoYo) to (XnYn).

The definition of a path here is different from the equality paths

of the last section. The modification here is with regard to the non-

increasing of gray levels as we proceed down the sequence. This will be

discussed further later.

Definition 3.2.3

The transitive closure of the relation R, denoted by RT, is defined

as:

= i, where Ri RoRo...oR

i times

We have seen R consists of ordered pairs of cells which are end points of

paths of length 1. RoR then consists of ordered pairs of cells of (Zr x

Z ) x (Z x Z ) which are end points of paths of length 2. Thus,c r c
RoR... .oR (i times) consists of ordered pairs of cells which are end

points of paths of length i. The union of all these sets defines the

transitive closure of R.

We are interested in the transitive closure or reachability set of

a cell. This is defined in an analogous manner to RT above.

Let R(m,n) = {(ij) I ((m,n), (i,j) e RI. We note that the City

Block digital distance function as used in the definition of R for e = I

gives for R(m,n) the four-neighborhood of (m,n) (the east, west, north,

south neighbors of (m,n)), if they are reachable, along with the cell

(m,n).
21



Definition 3.2.4

The transitive closure of the cell (m,n) e Zr x Zc is defined as:

RT(m,n) = LU] Ri(m,n) where
i=1

Ri(m,n) = {(ij) I ((m,n), (i,j)) e Ri  (i,j) Zr x Zc

Thus, RT(m,n) is a sub-image of Zr x Zc. Rl(m,n) = R(m,n) consists of

(m,n) and those cells which can be reached from (m,n) in one step, i.e.,

there is a path of length I from (m,n) to those cells. R2(m,n) consists

of (m,n) and those cells which can be reached from (m,n) in two steps,

or there is a path of length 2 from (m,n) to those cells. In general

Ri(m,n) consists of (m,n) and those cells reachable from (m,n) in i steps

or those cells which lie a path length i away from (m,n). So R T(m,n)

consists of all cells reachable from (m,n) or those cells such that a

path exists from (m,n) to them.

The clusters we wish to determine in an image are defined in terms

of RT(m,n). Given a cell (m,n) we wish to determine the closure of (m,n).

This may be called a cluster. However, we want these clusters to be

maximal in size, thus generating from the image maxima. Borrowing a

term from automata theory we will call these maximal clusters primaries.

They are defined formally as follows.

Definition 3.2.5

V 5 Zr x Zc is a primary of Zr x Zc if and only if:

(1) V= RT(m,n) for some (m,n) E Zr x Zc , and

(2) If (i,j) e Zr x Zc and V RT(ij), then V = R T(i,j)

22
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3.3 Algorithm to Compute Transitive Closure of a Cell

First we present the theoretical aspects of the algorithm. To do this

we introduce some notations:

Let c(i,j) = min {kIl(i,k) < I(i, k + 1) < . . < I(i,j)}
k

a(i,j) = max (kjI(i,j) > I(i, j + 1) > . . . > I(i,k)}
k

c(ij) and B(ij) are then the column coordinates of the last cell reach-

able, when traveling horizontally left and right, respectively, from (i,j).

Similarly, let

y(i,j) = min {kII(k,j) < I(k + 1, j) < . < I(ij)}
k

and

(i,j) = max {kIt(ij) > I(i + 1, j) > > l(k,j)}
k

.(. y(i,j) and 6(ij) are row coordinates of the last cell reachable when

traveling vertically up and down, respectively, from (ij).

From the definitions above, the following always hold:

(i,j) < j

B(i,j) > j -(I)

y(i,j) < i

(i,j) > i

In terms of these end row and column pointers we get two sequences of

cells. All cells reachable from (ij) traveling horizontally or vertically,

i.e., the sets:
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H(ij) = {(i,n)Ia(i,j) <n < S(ij)}

and

V(ij) = {(m,n)jy(ij) < m < 6(i,j)}

From the definition of these two sets and (1) above, it follows:

(ij) E H(ij) and -(2)
(i,j) E V(i,j) always

Thus, H(i,j) is the set of all points which can be reached from (ij)

going horizontally in both left (west) and right (east) directions.

Vii,j) is a similar set for the vertical paths from (ij) going up

(north) and down (south).

The algorithm consists of finding all these vertical and horizontal

sequences in an iterative manner. For this purpose we define a sequence

of setL AI,A 2, ... 'An as follows:

A, = {(p,q)} where (pq) e Zr x Zc is the cell whose closure

we wish to compute and

An + 1 U H(ij)
(i,j) e An

An4 .2  U V(i,j)
(i,j) e An + 1

Thus, by the above definitions and (2) it follows that Ai ZA i + 1, for

all positive integers i.

Before we prove a Lemma relating the sequence of sets A1 ,A2, ... An

to RT(p,q), a special note should be made regarding paths in a digital

image as defined in Defintion 3.2.2. Under the constraints of the form

24
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of p (City Block distance function) and e (e < 1), a path between two

cells in Zr x Zc, consists of alternating horizontal and vertical sub-

paths only. This is because the definition of p and a, allow at most only

the two vertical and two horizontal neighbors of a cell (m,n) in R(m,n).

Thus, any cell in a path in Zr x Zc is in either a horizontal or a vertical

relationship to its predecessor (we are using the four-neighborhood here).

We now prove the above-mentioned Lemma.

Lemma 3.3.1

A. = RT(p,q)

Proof

Let (ij) E RT(p,q).

Then there exists a path from (p,q) to (ij) but for any resolution

cell to be in such a path, it must be in either a horizontal or vertical

relationship to its predecessor.

Thus, the path can be broken up into alternating horizontal and verti-

cal oriented subpaths. The first horizontally oriented subpath gets picked

up in A2. The first vertically oriented subpath gets picked up in A3.

Eventually all the subpaths are included in A. Therefore, (i,j) c A and

so RT(p,q) G A.

Let (ij) c A.. By definition of A., it must include all resolution

cells on all paths made up of alternating horizontal and vertical oriented

subpaths of RT(p,q). Thus, (ij) E RT(pq) and so A, s RT (p,q). Thus,

Am = RT(p,q).

The structure of the algorithm is as follows. Start with the cell

(p,q) the set A1 whose closure we wish to get. In the first generate A2,

or all cells which can be reached going horizontally from (p,q).
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In the next scan generate A3 or all cells which can be reached from

each cell in A2, traveling vertically. Continue scanning generating

A4,As,... 1 is will give us R T(p,q).

By tho Ltemma, we know that we will get RT(p,q) in an infinte number

of scans. However, that is not practical or for that matter, not even

algorithmic. In practice, for images of finite size, the number of scans

necessary, is finite. We let the procedure terminate when no new cells

were added in the last scan. It remains to show that this will always

happen and hence we will always terminate in a finite number of steps.

Also, when we do stop we have got exactly RT(p,q). The following Lemma

shows this.

Lemma 3.3.2

Let AIA 2,.. .An be a sequence of sets as defined above. Then:

(1) There exists a positive integer n such that

An = An +1= =A.

(2) A R (p,q)

n

Proof

Since Ai  Ai + , for any positive integer i, the total number of

cells in Ai , for each scan cannot decrease.

If the number of cells absorbed is always increasing in successive

scans, then eventually the whole image will be exhausted, since it is of

finite size. Further scans cannot add anything new, thus part (1) holds

and we terminate the procedure. (This is the case when the whole image

belongs to RT(p,q)).

26
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Suppose then for some scan n, An + 1 = An' There were no new cells

added. Either A was a horizontal scan or a vertical scan. (Hori-

zontal scan means a scan in which we were looking for horizontal paths).

Let An + 1 be a horizontal scan. Then An + 1 implies there were

no new horizontal paths added in the (n + 1)th scan. Thus, the (n + 2 )th

scan, (a vertical scan) cannot absorb any new members, since no new cells

were obtained in the previous horizontal scan, which would have generated

new vertical paths. And if there were any vertical paths from the cells

in An + 1' they would have been picked up in the nth scan. A similar

argument holds for the next (horizontal) (n + 3)th scan. No new members

can be generated.

If An + 1 were a vertical scan, a similar discussion, with the

words horizontal and vertical interchanged, would give that successive

scans would yield the same sets.

Thus, An =An +1 implies An = An + 1 = An +2 - +3 . . . A

where n is a positive integer.

From Lemma 3.3.1 we have RT(p,q) A and by part I of this lemma

An : A.. So RT(p,q) = A.

The two lemmas thus constitute a proof for the algorithm.

In the implementation of the algorithm one has to keep track of some

details like which cells have been included already or which cells should

the paths be checked from. It is quite redundant to generate paths from

cells more than once, as we would gain nothing new. These details may be

kept track of by using two markers. Thus, if the horizontal path from a

cell has been generated in a scan, it should be marked "horizontally-done."

It may thus be skipped over in later horizontal scans. These markers can
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then be used in generating path from only new cells gotten in the previous

scan. For example, new vertical paths are generated from those cells which

are marked "horizontally done" by the previous scan, but not "vertically

done."

At the end of the generation process those cells marked vertically

and horizontally done will belong to RT (p,q). Some examples will make

this clearer.

We present two examples with discussion as to how the algorithm acts

on them. They have been simplified to enable better visual understanding.

Only one primary per picture is discussed (usually there are many more)

and we ignore gray tones, assuming that the shaded areas are the primaries

(closure) of mountain tops at X.

In Figure 3.3.1 we have a simple blob primary as marked out. The

generator is X. Here A1 = (X}. In the first scan we will generate the

horizontal path (A2 = {set of cells between A and B}) from X, marking

every cell in this path with, say "-", as "horizontally done." In the

second scan we will generate vertical paths only from cells marked with

an "-". All these cells (i.e., set A3 ) in the vertical paths will be

marked "I" to denote "vertically done." At this stage, cells on the line

AB will be marked "+" as both horizontal and vertical paths have been

generated from them. A3 then will consist of all points in the shaded

area except cells C and D as they have not been reached yet. The third

scan (horizontal) will generate A4 which shall include C and D. From

this scan we will generate horizontal paths from cells marked with "I"

only. Two of these paths will include C and D. At the end of this scan

all cells in the primary would have been gotten and all except C and D

will be marked "+". C and D will contain only "-" marks, and will need
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Figure 3.3.2. Example of primary generation.
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to have their vertical neighbors checked for paths in the next (fourth)

scan. This, of course, will ,ot give us any new cells and C and D will

be marked "+". The whole primary has been generated and the process will

stop here, A4 = A5.

What determined the value n = 5 here? We note, if it was not for C

and D there would have been one less scan. We need at least three scans

here since starting with the horizontal direction, three alternating

(horizontal-vertical-horizontal) subpaths are needed to reach C and D.

The fourth scan just determines that we have all the cells.

The number of scans needed is the minimum number of alternating

subpaths needed (plus one) such that all the cells are reached. This

becomes evident on examining Figure 3.3.2. It looks quite pathological

but serves to illustrate the problem.

Here we have the generator of the primary, X. (A1 = (X}). In the

first (horizontal) scan we will get A2 = {cells on the line AB}. The

second (vertical) scan will yield in addition to A2, A3 = A2 U{cells C

and D and cells on vertical line BE}. The next horizontal scan will yield

in addition to what we have gotten the cells on line EF. Thus, the pat-

tern is as follows. Here we let {RS} denote cells lying betweeen and

including the cells R and S:
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A
A2  = AlUAB) = {ABI

A3  = A2 u(C,D) u {BE}

A4  = A4 U(EF}

A5  = A4 U{FG}

A6  = A5 u{GH}

A7  = A6 U{HI }

A8  A7 U{IJ}

A9  : A8 UJK}

A10 = A9 u{KL}

A11 = A1oU{LM}

A12 : AI1 U{NPU {f MO}

A13 = A12 kJ(Q}

A14 = A13  and the procedure stops.

Here we needed 13 scans since a minimum of twelve alternating subpaths

are needed to reach Q from X.

This may seem like quite a lot, but in most other methods to generate

transitive closure usually more than 13 scans would be needed. The reason

being most other methods look for paths in only one direction per scan.

This algorithm looks at two directions in a scan (either left-right or

up-down), which gives it more power in the general case.

3.4 Algorithms

In this section we will lnok at some more algorithms. The first two

of these compute the extrema of the image. Then follows an algorithm to

give each extrema a unique label. The last is another algorithm for

reachability sets. The algorithm of Section 3.3 computed the descending
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component of one maximum only. In general, the descending components of

different maxima overlap and thus if the entire component is desired,

each has to be computed separately. We use a modified version of the

reachability set of an extremum. This set consists of those pixels

which are reachable by the extremum and no other. In otherwords, if a

pixel is reachable by two maxima (or minima) it is considered in a special

overlap region and ignored. These sets are called the unique reachability

sets. Thus, the result of the last algorithm on the image containing the

maxima, is another image with the maxima grown out over their unique

descending components. By definition the ascending components of the

maxima are the maxima themselves. A similar discussion holds for the

minima.

In order to maintain consistency and allow for comparison, the

examples presented are the result of applying the various algorithms to

one image, designated as M4A. This is a 128 x 128 section of the fourth

image provided by ETL. The "A" stands for the first subsection examined

from this image. The two bands are shown in Figure 3.4.1. The first is

the radar image while the second is the aerial photo image. The section

is of a mostly residential area with a trailer court at the bottom left

and a plain field at the top left. It was chosen for its three sample

textures. For most of the processing the aerial photo was used as it had

less noise.

The usage and documentation of the algorithms is described in the

Appendix. Basically they have all been set up as image operators. That

is, all the subroutines and procedures for each algorithm were put together

in a mini-package. This resulted in an operator or command which was

applied to the image. Each operatdr takes in one or two images as input

32



Figure 3.4.1a. Band 1 of MOA Radar Image. Image size
1280128.

Figure 3.4.lb. Band 2 of- M4A -Aerial Photo. Image size

'128xl23 .
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and generates a resulting output image. This output image can be operated

upon by other commands as necessary.

There are four commands - MRKNX, MNMX8, LBLCT, REACH. The7.first two

compute the extrema of the image. LBLCT is used to label each extrema

region uniquely, while REACH computes the unique reachability regions.

The first, MRKNX, stands for mark local minima and maxima pixels.

It takes in a gray tone image and outputs an image in which each pixel

is marked as a minima, maxima, flat or transition, as determined by apply-

ing a 3 x 3 window over each pixel. It is a one pass operation. The

output values do not represent true relative extrema as only a 3 x 3 window

for each pixel is examined. The pixel is marked 1 or 2 if it was the minimum

or maximum of the nine cells (itself and its eight neighbors). It is given

a value 0 (flat) if all nine pixels had the same value. Finally, if it is

none of the above, it is marked as transitionary and given a value 3.

In the example below, Figure 3.4.2, the center cell will receive the

various labels.

3 5 2 2 2 1 5 5 5 2 5 5

4 1 7 2 5 3 5 5 5 2 3 4

6 8 4 5 4 3 5 5 5 2 3 4

Minimum = 1 Maximum = 2 Flat = 0 Transitionary = 3

Figure 3.4.2. Labels assigned to the center pixel by MRKNX.
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The MRKNX operation results in an image which serves as "seeds" for a

region growth process by the iterative MNMX8 operator.

The commands MNMX8, LBLCT, and REACH, while they do different things,

all have the same basic structure and scan the image by applying a 2 x 2

window template. The effect of these programs is to apply a rule to the

cell pairs defined by the template on the image, until all these pairs

satisfy some relation. The scan increment is one cell at a time and the

2 x 2 window covers all adjacent cell pairs as is illustrated below.

Figure 3.4.3 shows the scan template. The arrows indicate which pairs of

cells are compared. The template and scanning work on the eight neighbor-

hood of a pixel.

There are four comparisons made for each window positioning. When

the template is passed across the image in one pixel increments, all of

the adjacent (eight neighbors) of every cell in the image are covered during

each scan of the image. This can be seen in Figure 3.4.4. Thus, the center

pixel is compared to each of its neighbors. For MNMX8 and REACH the window

is moved from left to right and right to left as well as top to bottom and

bottom to top. For LBLCT the scan goes horizontally and from top to bottom.

Each scan results in propagation of labels, markers, etc. The scanning

iterations continue until no change is recorded. This results in the

output image for the command.

MNMX8 is a recursive filter which uses the original gray tone image

and the output of MRKNX to label extrema. Labels (0,1,2,3) in the image

from MRKNX are propagated till all flats are eliminated. The propagation

rule on a pair of cells for a few labels of the marked image is given

below.
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Figure 3.4.3. Scan template for MNMX8, LBLCT, and REACH operators. Four
cell-pair comparisons are made for each template positioning.

Figure 3.4.4. All eight neighbors for pixel A are covered once by moving
the template across one column and down one row.
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Propagation need only be performed if the two labels are not the same

and the corresponding two gray tones are equal.

Let the two cells be x and y with the marked labels Lx and L . We

have three cases to examine for when Lx  Ly and the gray tones of x & y

are the same:

(a) Either Lx or Ly equal 0 and the other non-zero (1,2,3).

Output is the non-zero label propagated into the 0
label cell.

(b) Either Lx = 1(min) and Ly = 2(max) or vice versa.

Output in both cells get marked 3 (transition)
as a region cannot be both a minimum and maximum
at the same time.

(c) Either Lx = 3 or Ly = 3. The output is 3 for both

cells regardless of the other value. The transi-
tion label is propagated since if a region is known
to have a transition label, all its cells must be
marked transition also.

The image is iterated with the scanning template till no more propa-

gation is possible. The propagation must cease as in each iteration the

number of pixels marked 0, 1, or 2 never increase while the number of

pixels marked 3 never decrease. Unless the image is pathological (i.e.,

all pixels have the same value), there will be at least one maxima and one

minima. The output image contains no zeros. The cells marked 1 and 2

represent the true relative minima and maxima.

Figure 3.4.5 show these for M4A. The second photo image was used to

determine both the local 3 by 3 mark labels as well as for the propagation

of these labels. The minima are red and the maxima areen, though on printing

the latter appear black.

In order to use either the minima or maxima, each one has to be labeled

uniquely. This allows for both property generation as well as the genera-

tion of the reachability sets. The LBLCT command does this for us. If

the maxima were specified, then it examines each maximally connected set
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Figure 3.4.5a. Local (3x3 window) mag ima (green), minima
(red), transitionary (yellow) and flat (black)
pixels. Result of applying the MRKNX
operator. (Shown at a larger scale.)

Figure 3.4.5b. Relative minima (red) and maxima (green).
Result of applying the MNMX8 operator.
(Shown at a larger scale.)
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of pixels marked 2 and assigns unique labels to each set. The pixels not.

marked 2 are ignored or treated as background markers.

LBLCT achieves its labeling by using the scanning template described

previously. It scans horizontally and goes from top to bottom of the

image. It also uses a linked list and counters to keep track of the number

of regions encountered. The propagation function for the labels of a pair

of cells in the output image is described below.

Let the two pixels be x and y. Lx and Ly are the labels in the output

image. My is the mark value of cell y in the input (result of MNMX8) image.

The discussion below is for labeling maxima, i.e., cells for which mark

value is 2.

Initially the labeled image is all zero. A counter which maintains

the current label count is initialized to 1. A linked list for the labels

is set up. Each entry is initialized to point to itself, e.g., list(5) = 5

states that pixels that have label 5 are connected to region number 5.

At a later stage this may change to say list(5) = 3. This means that

pixel labeled 5 should have the same label as those for region number 3,

as pixels with labels 3 and 5 were once assumed as separa ted but turned

out to belong to the same region. At the end of scanning the image, the

smallest linked label from the list is chosen and the output image is

relabeled to generate the unique labels.

If cell y has a mark value of 2, it gets labeled one of three ways

in the output image:

(a) If Ly ,O, Ly is set to the label that is linked

to the linked list. It is possible that the result
of the relabeling will produce the same result as
before, as all labels start out being linked to
themselves. After this relabeling Lx is

examined. If Lx # 0 then list (Max(Lx,Ly) =

Min(Lx,L y). The larger label is linked to the

smaller one. If Lx = 0 no action is performed.
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(b) If Ly 0 then if Lx  0, Ly : Lx.

(c) Case for both Lx = Ly 0. Ly then gets

set to the next new label.

Figure 3.4.6 shows the uniquely labeled extrema for M4A.

The REACH operator generates reachability set for either the minima

or maxima. Input is the gray tone image and a uniquely labeled extrema

image. The cells not belonging to any maxima have been given a special

label 0 for background. The scanning is done as before. The propagation

rule is applied if the label of the two cells are not the same. The rule

for descending components is as follows. Let the graytones and labels

of the first and second cells be x, y, and Lx, L
(a) If (x < y) then no propagation

(b) If (LX < y) then no propagation

(c) If (Ly = 0) then Ly = Lx; otherwise Ly = OVL

OVL is the overlap label which indicates that a pixel is reachable

from two maxima. A similar rule exists for the ascending components.

Figure 3.4.7 shows the reachability sets for the extrema of M4A.

Next we look at some processing with these and other algorithms.
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(a) Maxima (b) Minima

Figure 3.4.6. Uniquely labelled Maxima and Minima of M4A.
Result of applying the LBLCT operator to the
maxima and minima pixels respectively of
Figure 3.4.5b.

I

(a) Descending Components (b) Ascending Components

Figure 3.4.7. Descending components of the Maxima and
Ascending components of the Minima pixels.
These are the unique reachability sets of M4A,
as a result of applying the REACH operator.
The overlap region is black.
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4.0 EXPERIMENTS WITH EXTREMA DENSITY

This chapter discusses experiments carried out with extrema density.

Essentially this is a measure of number of extrema per unit area. Exper-

ments were done using either maxima, minima, or both. Density images were

also generated from the reachability sets.

In Chapter 2.0 we mentioned two investigations which used extrema

density for texture analysis. Their extrema were computed along horizon-

tal scan lines only and were not true extrema. A more recent work which

achieves image segmentation using extrema is by Mitchell and Carlton (1978).

In addition to using just frequency of extrema, they also make use the

height attributes of extrema, which we discuss in the next chapter. Their

extrema are computed by combining horizontal and vertical one-dimensional

scan operations. An extremum in one-dimension is found if the gray tones

rise or fall beyond preset levels (heights). Thus, these extrema als..

differ from the relative min/max presented in the last chapter.

Images are generated in which each pixel is given a count of the num-

ber of extrema in a 60 x 60 window surrounding it. Different images with

different thresholds of extrema height are generated. These are then

used together in a multi-spectral clustering algorithm for segmentation.

Hierarchical segmentation is achieved by using smaller window sizes and

segmenting within the large regions obtained in previous iterations. They

achieved fairly good results with this method.

As in the last chapter, all images presented here are the result of

processing image M4A of Figure 3.4.1 to different degrees. A large number

of images were generated and examined. In the next few sections we

summarize the experiments and results.
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4.1 Extrema Density

The problem with simply counting all the extrema in the same extrema

plateau as extrema is that extrema per unit area is not sensitive to the

difference between a region having few large plateaus of extrema or many

simple pixel extrema. One solution to this is to count each extrema

plateau once. This involves locating some central pixel in the extrema

and marking it as the extrema associated with the plateau. The problem

was solved in the experiments performed by taking a weight "W" and assign-

ing a value W/N for each pixel in the N-celled extrema. Thus, if the weight

was 100, each single celled extrema would get a value 100; each cell in a

two-cell extrema would get a value 50; the three cells in a three-cell ex-

trema would get values 33, 33, and 34; and so on. To achieve this the

size of each extrema region had to be determined. The algorithm for that

is discussed in the next chapter under extrema attributes.

The choice of the weight is arbitrary as long as it is larger than

the size of the largest extrema. For our experiments a weight of 255 was

chosen for no other reason than the fact that no more than 8 bits of sig-

nificance would be required to store image values. Higher weights would

have resulted in larger number of bits and would have used more disc space.

In order to obtain density images, the image with weight-distributed

extrema was filtered repeatedly. The filters applied were averaging box

filters, of window sizes 3 x 3 and 5 x 5.

The result of applying a 3 x 3 box filter once is to replace the gray

tone of a pixel by the average of the gray levels of its neighbors and

itself. This is a low pass filter operation and results in a smooth image

or defocused image.
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The filter can be represented as a window as shown in Fioure 4.1.1.

Each cell has a weight of 1, and the resulting sum for a pixel is divided

by the sum of the weights, 9. One iteration does not do much defocusing.

Either we can use a larger window like 10 x 10, or 20 x 20, or apply a

small window repeatedly. Using a large window has a drawback. The result-

bli ing image is streaked. This is a consequence of giving all the cells in

the large window the same weight. It makes more sense to weigh the center

cell more and reduce the weight as we go towards the edges of the window.

This is exactly what results in apply a smaller filter repeatedly. The

rest of Figure 4.1.1 shows the distribution of weights when a 3 x 3 window

is applied up to 5 times. The effect of applying two 3 x 3 filters is to

apply the filter "332" once. The size of filter is larger but the weight-

ing is no longer uniform. Figure 4.1.2 shows the corresponding filters for

re _jted 5 x 5 iterations.

Let us examine this in the general case. Let the size of the filter

be S x S. We will assume S to be odd and can represent it as S = 2m + 1,

m is an integer. If we apply this filter n times, the resulting filter

will be (2nm + 1) x (2nm + 1) in size, and the total weight associated with

the filter is S2n .

In the next set of figures we have the results. Figure 4.1.3 shows

the weighted maxima image of M4A and the results of applying five 3 x 3

and five 5 x 5 box filter operations. The density effect starts to come

about the third application of the filter. We could have gone on beyond

five iterations, but did not. In these density images a brighter area

corresponds to higher texture density or finer texture. The dark areas

correspond to lower texture density or coarser texture. These should be

compared to the original M4A photo image of Figure 3.4.1, for texture
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(a) Maxima pixels weighted.
Each region was given a weight of 255.

The different colors correspond to maxima
of different sizes. 536 regions.

(b) One 3x3 window filter (g) One 5x5 window filter

(c) Two 3x3 window filters (h) Two 5x5 window filters

Figure 4.1.3. Density images from Maxima pixels.
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(d) Three 303 window filters i)Three 5x5 window, filters

(e) Four 303 window filters ()Four 5x5 window filters

.1F

(f) Five 303 windo-w filters (k) Five 5x5 window filters

4 Figure 4.1.3 (continued
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measures. The fine texture of area at bottom up corresponds to the trailer

court. The discontinuity in the rows of the trailer court is maintained

if not emphasized in the density images.

Figure 4.1.4 shows the five 5 x 5 window filtered image level sliced.

This shows the areas of different texture densities a little better.

On closer examination in this and pictures of Figure 4.1.3, a block-

ing or contouring effect may be discerned. This is owing to the integer

truncation in the box filtering.

Figure 4.1.5 shows the weighted minima regions and the density images

after five 3 x 3 and 5 x 5 iterations.

Figures 4.1.6 and 4.1.7 show the corresponding results of the above

procedure as applied to the descending components of the maxima and the

ascending components of the minima. The resulting density images are

smoother than those of the corresponding extrema as the weight was dis-

tributed over more cells before the filtering began.

In Chapter 2.0 we had mentioned a texture transform procedure based

on spatial co-occurrence matrices. The result of applying that to a

quantized version of M4A is shown in Figure 4.1.8. This was done for com-

parison with the density images which can also be considered as texture

transforms. The image in Figure 4.1.8 was generated assuming f in Definition

2.1.3 to be the identity function. The results do not match up over the

entire image, indicating the two methods emphasize different texture attributes.

Antoher experiment was run to compare these results with the idea of

using edges/unit area as texture measures. The edge image was obtained

by applying the quick Roberts gradient function to the M4A-photo image. For

a pixel (i,j) the quick Roberts gradient value is given by R(i,j):
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Figure 4.1.4. Weighted Maxima density image after applying a
5x5 averaging window five times and level
slicing.
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(a) Minima pixels weighted.
Each region was given a weight of 255.

The different colors correspond to minima
of different sizes. 511 regions.

(b) Five 3x3 window filters (c) Five 5x5 window filters

Figure 4.1.5. Density images from Minima pixels.
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(a) Descending Component pixels weighted.
Each component was given a weight of 255.

The different colors correspond to components
of different sizes. 536 regions.

(b) Five 3x3 window filters (c) Five 5x5 window filters

Figure 4.1.6. Density images from Descending Components.
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(a) Ascending Components weighted.
Each component was given a weight of 255.

The different colors correspond to components

of different sizes. 511 regions.

(b) Five 3x3 window filters (c) Five 5x5 window filters

Figure 4.1.7. Density images from Ascending Components.
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Figure 4.1.8 A Textural transform of MA based on spatial
co-occurrence matrices.
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R(i,j) = jI(i,j) - I(i + 1, j + 1)1 + JI(i + 1, j) - I(i, j + 1)1

This image is shown in Figure 4.1.9. To get the edge density image

five 3 x 3 and 5 x 5 box filter operations were applied. These results

are given in Figure 4.1.10. They compare quite well with the min/max

density images.

Finally, texture density images were generated using both the minima

and maxima. The full extrema image was obtained by relabeling the 2(max)

label from the result of MNMX8 to the 1(min) label. Thus, all extrema

were then marked by 1. A LBLCT operation was performed to give each

maximally connected region a unique label to allow for the distributed

weight procedure to be applicable. A point that was noted in this pro-

cess was that the number of extrema obtained this way was not the sum of

the relative minima and maxima. There were 511 minima and 536 maxima

regions in M4A. The resulting extrema image above had only 976 regions.

The difference is because in the process of labeling twos to ones, min

and max extremum which happened to be adjacent (i.e., in each other's

eight neighborhood) were merged into one region.

t The weighted extrema image and corresponding density images are

shown in Figure 4.1.11. These are similar to the min/max density func- I

tions as may be expected.

On a visual level the results seemed to capture texture pretty well.

In the next section we will look at another method used to analyze the

results.

4.2 Autocorrelation Tests

It was hoped that the histograms of the extrema density images would

show three or four well-defined peaks corresponding to the three types of
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Figure 4.1.9 Roberts Gradient image of M4A.

I. 4

(a) Five 303 window filters (b) Five 5x5 window filters

Figure 4.1.10. Edge density images after applying averaging
filters to the gradient image.
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(a) Extrema (minima & maxima) pixels weighted.
Each region was given a weight of 255.

The different colors correspond to regions
different sizes. 976 regions.

• 44

(b) Five 3x3 window filters (c) Five 5x5 window filters

Figure 4.1.11. Density images from Extrema pixels.
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areas observed on the image. If this was so, then segmentation could be

achieved based on level slicing on the histograms. In general, histograms

of images with a small amount of filtering showed a number of sharply

defined peaks. Histogram of images with high number of iterations had one

large peak and some shallow peaks. None of these promised good direct

segmentation. However, the histogram of the image which had been filtered

three times with a 3 x 3 filter did have four peaks and seemed the best

candidate for examination. Figure 4.2.1 shows this histogram.

In order to investigate the properties of the density measures, an

experiment was performed in which the density images were quantized down

to 2, 3, 4, and 5 levels. The resulting images were segmentations of the

original based on extrema density. To examine how good the segmentations

were, statistical properties of areas on the original image, defined by

the segmented images, were obtained. The statistical properties were

essentially autocorrelation values over the different areas. This function

is discussed next.

.The autocorrelations computed did not contain cross product terms

involving pixels from two different contiguous regions of a category. The

spatial correlation for one category, and lag(L) is the ordinary correla-

tion coefficient for two sets of measurements on a subset S of pixels in

the category. This is described below.

Consider a maximal sequence of pixels in a row of the segmented

image which belong to the same category. The first and last pixels in

the sequence are considered to be on the boundary. If the sequence is N

long, then for a given lag L, the right-most (N - L) pixels are in the

subset S. S consists of all such pixels in all the connected sequences

of the category. Note that the size of S decreases as L increases. The
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Figure 4.2.1. Histogram of extrema density image after three 3 x 3 window

averaging filters.
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corresponding gray tone in the original image for the pixel in S gives us

the first measurement for the correlation count. The second is the gray

tone of the pixel L columns to the left. We define the spatial autocorre-

lation c(L) on connected sequences which are run lengths along rows.

Definition 4.2.1

Let there be K connected sequences with length greater than L in

a category. Let the size of each sequence be Ni. Also, let ri be the

image row for the i-th sequence and ci be the column position in the image

for the first pixel in sequence i. The spatial autocorrelation function

for lag L is given by:

K c i +N i - 1

a (L) I(ri,j)*I(r., j L
#S) i j = c. + L 1111 - L)

where

I(ri,j) is the gray tone of the original image at pixel (rij);

K ci + N -I

U1 Ts I(ri,J) and
i = 1 j = c L

K ci + Ni - 1

2 1 , Ec. (ri,J)2  2
"1uIl T' i = I j=Ci + L

are the mean and standard deviation for the first set. Similarly:

K c i + Ni  1

E E 1 c I(ri, j - L) and
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Kic+N. -1

G 2 1 1 E E(rij L)2 2
2= - i'= I1j =c+i + L r - 2

are the mean and standard deviation for the second set in the corre-

lation computation. The number of pixels in the set (#S) is given by:

K ci + Ni - 1

#S = 1
i = j = ci + L

The segmentation of the density images were created by three rules.

First, by an equal interval quantization. Since the density tended to be

concentrated at the low end of its range, the segments of low density

tended to cover most of the area. Each of the 3 x 3 filter iterations

on the extrema image were semgented.

Second, the equal probability quantization rule was tried. This pro-

duced images with approximately equal number of pixels in each segment.

As above, each of the 3 x 3 filter iterations extrema density images were

segmented to 2, 3, 4, and 5 levels.

By the third rule the image which had to be filtered three times with

a 3 x 3 window was clustered into 4 segments corresponding to the 4 peaks

in its histogram. All these rules generated a large number of tables and

values. We will examine the results of the last rule in more detail. The

segmented images are shown in Figure 4.2.2.

As mentioned above, the autocorrelation function computed the auto-

correlations in the horizontal direction as well- as the mean and standard

deviation of the gray tones for the entire category. The mean corresponded

to the average height within a segment. The standard deviations and auto-

correlations measured aspects of texture within a segment. Table 4.2.1
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Figure 4.2.2a. Four segments (0-black), (1-green), (2-orange)
and (3-purple) of the extrenia density image
after three 3U3 averaging filters.

Figure 4.2.2b. Transpose of filter 333 extrema density image.
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shows the autocorrelations for the four categories for different lag values;

for both horizontal and vertical scans. The results for the vertical scans

were obtained by applying the same algorithms to the images after they were

transposed (i.e., rows and columns interchanged).

It was expected that high standard deviations as measured of height

variability tend to indicate rough texture. Autocorrelations of pixel

heights on images generally tend to be high for small lags and drop to

near zero for larger lags. Rapidly decreasing autocorrelations with

increasing lag indicates rough texture.

The results examined over the various segmentations were mixed. In

general, the means and standard deviations increased slowly with increas-

ing extrema density of a segment. This trend in standard.deviations

supports the idea that extrema density measures texture. The fact that

means and standard deviations increase together and are therefore corre-

lated, supports the observation that extrema images are like contour maps.

There was no clear pattern between segments and autocorrelations.

The autocorrelations in the vertical directions were significantly dif-

ferent from those in the horizontal direction for the same segmentation.

This was perhaps due to a directionality in the textures in M4A.

A statistical problem whose significance is not clear yet is the

fact that the number of pixels in the subset S goes down as L increases.

That is, the autocorrelations at different lags are being computed for

different sample sizes. As long as the sample size is large, this would

not have much effect. However, for some categories the sample size falls

off quite rapidly with increasing lag. This may give rise to statistically

invalid results and may explain why there is a slight upswing in the

autocorrelation for higher lags.
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AUTO-CORRELATIONS FOR SEGMENT NO. 0

MEAN GRAY TONE = 36. 40

STD. DEVIATION = 12. 67
SEGMENT SIZE = 2149 PIXELS.

I -------------------- II I--------------------I
I HORIZONTAL II VERTICAL I

I --. . -- - -- - -.. . . ----.. . I .. . . ..I . . I

I LAG I ALPHA I SAMPLE II ALPHA I SAMPLE I
I -------I----------I----------- II --------- I ---------- I
I 1 I 0.93 I 1609 II 0. 92 I 1577 I
I 2 I 0.80 I 1167 II 0.80 I 1101 1
I 3 1 0.65 I 875 II 0.70 1 774 I
I 4 1 0. 44 I 682 II 0.62 I 538 1
I 5 I 0.23 I 544 II 0.55 I 385 I
I 6 I 0.03 I 439 II 0.52 I 274 I
I 7 I -0.10 I 358 II 0.49 I 197 I
I 8 I -0. 13 I 289 II 0.54 I 138 I
I 9 I -0. 14 I 234 II 0.64 I 97 1
I 10 I -0.11 I 183 II 0.73 I 68 1
I II---------- II--------- I ---------- I

AUTO-CORRELATIONS FOR SEGMENT NO. 1

MEAN GRAY TONE = 39 03
STD. DEVIATION = 13. 25
SEGMENT SIZE = 4094 PIXELS.

I -------------------- II --------------------- I
I HORIZONTAL II VERTICAL I

I ------- I ........- I----------- II --------- I ---------- I
I LAG I ALPHA I SAMPLE II ALPHA I SAMPLE I
I ------- I----------I----------- II --------- I ---------- I
I 1 I 0.90 I 2383 II 0.86 I 2447 I
I 2 I 0.73 I 1367 II 0.68 I 1443 I
I 3 I 0.61 I 795 II 0. 58 I 876 I
I 4 I 0.51 I 485 II 0.48 I 550 I
1 5 1 0. 43 1 301 II 0. 43 1 344 1
I 6 I 0.38 I 190 II 0.39 I 211 I

I 7 I 0. 35 I 118 II 0. 33 I 127 I
A 8 I 0.34 I 69 II 0.28 I 74 I
I 9 I 0.32 I 37 II 0.25 I 43 1
I 10 I 0.46 I 16 II 0.22 I 24 1
I ------- I---------I--------- -II --------- I ---------- I

Table 4.2.1. Autocorrelations ALPHA as a function of LAG for the four segments
of Figure 4.2.2. SAMPLE indicates the number of pixels for
computing the autocorrelation for different lags.
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AUTO-CORRELATIONS FOR SEGMENT NO. 2

MEAN GRAY TONE = 41. 80
STD. DEVIATION = 15. 36
SEGMENT SIZE = 6957 PIXELS.

I --------------------II -------------------- I
I HORIZONTAL II VERTICAL I

I --- -I --------- I ----------- II --------- I ---------- I
I LAG I ALPHA I SAMPLE II ALPHA I SAMPLE I
I ------ I --------- I ---------- II --------- I ---------- I
I 1 I 0.90 I 4980 II 0.84 I 5118 I
I 2 I 0.71 I 3443 II 0.59 I 3631 I
I 3 I 0.44 I 2372 II 0.40 I 2581 I
I 4 I 0.19 I 1668 II 0.29 I 1875 I
I I 0.04 I 1183 II 0.24 I 1372 I
I 6 I -0.05 I 833 II 0.22 I 1000 I
I 7 I -0.04 I 584 II 0.21 I 732 I
I 8 I -0.01 I 430 II 0.20 I 541 I
I 9 I 0.01 I 310 II 0.15 I 407 I
I 10 I 0.02 I 232 II 0.14 I 304 I
I ------ I --------- I---------- II --------- I ---------- I

AUTO-CORRELATIONS FOR SEGMENT NO. 3

MEAN GRAY TONE = 45. 16
STD. DEVIATION = 16. 10
SEGMENT SIZE = 3184 PIXELS.

I -------------------- II -------------------- I

I HORIZONTAL II VERTICAL I
I ------ I- - -I--------- II --------- I ----------- I
I LAG I ALPHA I SAMPLE II ALPHA I SAMPLE I

I --- -I----------- II---------I ---------- I
I 1 I 0.90 I 2358 II 0.74 I 2444 I
I 2 I 0.73 I 1662 II 0. 48 I 1813 I
I 3 I 0.58, I 1131 II 0.57 I 1324 I
I 4 I 0.47 I 774 II 0.58 I 959 I
I I 0.35 I 536 II 0.42 I 723 I
I 6 I 0.27 I 385 II 0.42 I 552 I
I 7 I 0.25 I 284 II 0.50 I 422 I
I 8 I 0.31 I 217 II 0.32 I 321 I
I 9 I 0.41 I 169 II 0.22 I 248 I
I 10 I 0.55 I 131 II 0.39 I 188 I
I -------I- ---- I--------- II --------- I ---------- I

Table 4.2.1 (continued). Autocorrelations ALPHA as a function of LAG for
the four segments of Figure 4.2.2. SAMPLE indi-
cates the number of pixels for computing the
autocorrelation for different lags.
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In view of the above discussion, various suggestions emerge. First,

some similar experiments should be tried on larger images with clearly

identifiable texture and no directionalities, or balanced directoonalities.

Artifically synthesized texture images could be useful. Second, a part

of the reason for lack of clearly Identifiable patterns with autocorrela-

tions is that many areas may be sloped. In these areas, where gray tones

locally approximate a tilted plane, pixels will be significantly posi-

tively or negatively correlated. It may be worthwhile to check this

idea by using sloped facet filtering models or experiment with arti-

ficial images with tilted planes in them.

The weight distribution over extrema (see Section 4.1) are inversely

proportional to extrema size and may not be best for creating extrema

density images. Consider a large area which is perfectly flat and is a

local extrema. This area has a smooth (or no) texture, but will be given

a higher density measure than a smooth slope. Weights chosen inversely

proportional to a higher power of extrema may yield an improved texture

density image.
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5.0 ATTRIBUTES OF PRIMITIVES

Texture measures based on histogram counts or density images tie

together structural and statistical approaches. The approach is struc-

tural in the sense that the primitives are structural. The approach is

statistical in that the spatial interaction, or the lack of it, between

primitives is measured by probabilities. These are all weak texture

measures and can be useful in segmentation when the texture patterns in

the image have weak spatial interaction. For textures which have strong

spatial interactions it may be necessary to determine, for each pair of

primitives, the frequency with which the primitives co-occur in a speci-

fied spatial relationship. These would be the strong texture measures

mentioned in Chapter 2. Meanwhile, a stronger form of the weak features

can be explored by taking into account properties of primitives or the

distribution of these properties. A good example is the work of Mitchell

and Carlton (1978) who not only used the frequency of occurrence of the

extrema primitive (density) but also one of its attributes, the height.

Different primitives, of course, yield different attributes. As a

t matter of fact, a primitive may be described as a connected set of resolu-

tion cells characterized by a list of attributes. In the rest of the

chapter we will look at some of the attributes of the extrema and the

reachability set primitives. Since our aim is segmentation of the image,

we will look at a general scheme to extract the primitive attributes and

an unsupervised clustering method to cluster the primitives. This will

then allow us to define a segmentation on the image. In what follows we

will use the term primitive to mean both the extrema as well as the

reachability sets.

The last section discusses some extensions of attributes for strong

texture measures.
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5.1 Extrema Properties

We have already encountered one primitive attribute in the last

chapter - the size of the primitive. We had used the size of the fre-

quency of the primitives to create the weight distributed images for the

generation of the density images. The size is an important attribute,

for in addition to being one, it is also used in the definition

of some other attributes.

The next most intuitive attribute is perhaps the height. This better

described by the one-dimensional cross-section shown in Figure 5.1.1.

This example is a maxima or a descending component of a maxima. "hy",

the relative height is the difference between the maxima and its highest

valley. "ha" is the absolute height of the maxima. "h " is related to

contrast while "ha" is related to brightness or intensity at that pixel

value. The width or size associated with a maxima can be the distance

between its two adjacent minima or valleys. Corresponding definitions

exists for valley heights (depths) for the minima and the ascending com-

ponent primitives.

Ehrich and Foith (1976, 1978) used maxima values (heights) in hori-

zontal directions as primitives. They represented the primitives using

the technique of a relational tree, which is an elegant method of storing

attribute values of primitives, and at the same time showing the recur-

sively nested structure of the primitives.

When we go to two-dimensional extrema, some modifications were made

depending upon the property. We had wanted the property extraction to be

a one or two pass operation on the image (this general scheme is described

later). In order to determine widths and relative heights in two dimen-

sions in an analogous manner as for the one-dimensional example above,
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Figure 5.1.1. Showing absolute height "h a" relative height " r and

width "w" of a maxima, in a one-dimensional cross-section.
i
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several iterations would be needed, so the definitions of relative height

and primitive width were modified. For the reachability sets the relative

height become the difference between the maxima and the minimum gray tone.

This is the number of gray tones in the region. Note that this does not

guarantee the minimum gray tone to be one of the boundary pixels of the

reachability set. The width was characterized by the shape (elongation

or circularity) of the reachability set. The relative height and width

for an extrema were not used. Another attribute used was the average

gray tone for an extrema. This is again meaningful for the reachability

sets only.

An attribute of the primitives which was useful indirectly was the

center of mass of the regions. This is the pixel location of the center

of mass of each region and is defined below.

Definition 5.1.1

The center of mass of a subset S f the image, denoted by (rmcm)

is given by:

1 T1 ' ifral ,
mr i and cm  F r

and c jF ci for all (r.,Ci) E Sr m m=11

The center of mass for single pixel regions was the pixel itself.

The center of mass came in useful in computing other properties. It was

also designed for input to the region adjacency program discussed at the

end.

Other attributes examined dealt with shape and orientation. The

simplest definitions of the spread of a region are the dimensions and

perhaps area of the covering rectangle. A more realistic definition is

elongation. This can be defined as the ratio of the larger to smaller

eigen value of the 2 x 2 second moment matrix obtained from the (x)
y
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coordinates of the pixels in the regions (Bachi, 1973; Frolov, 1975).

Actually the square root of the ratio corresponds to the ratio of the

major to the minor axes of the covering ellipse. When the region is

circular, this value is 1. In this computation, the (x) coordinates
y

are measured relative to the center of the region. Thus, having an

image with the center of mass pixels for each region marked out makes

this computation quite straight forward.

Another measure for circularity is the ratio of the standard devia-

tion to the mean of the radii from the region center to its border

(Haralick, 1975). However, this was not used as many of the regions

had only a few pixels which made the measure difficult for most part.

As can be seen from the images of the reachability sets, they are

not usually circular in shape but also have specific orientations. Two

measures for this were examined. The first was based on the second

moment matrix of the pixels described above. The components of the

normalized eigen vectors corresponding to the largest eigen value are the

direction sine and cosine for the region. These angles can be quantized

over certain ranges, yielding the orientation of the shape.

The second orientation measure was different in more than one way

from the attributes discussed above. It is actually a strong measure.

In this case the orientation angle for each region was defined by the

proximity and location of the closest region to it. Thus, this was a

co-occurrence measure. The proximity was measured between the center

of masses for the two regions. If the closest region was too far away,

a special value was assigned for the orientation property.
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There are many more complex properties that could be defined, but

this would have made the investigation an unending task. In the next

section a general scheme is presented to extract the properties. This

is followed by a discussion on how the properties may be stored and used.

5.2 Property Extraction

Because of a large number of primitives per image and a variety of

properties, the property extraction programs were restricted to computing

properties that took one or two scans of the image. A small 128 x 128

image contained 500-800 primitives. Owing to the limited core on the

minicomputer, a satisfactory scheme was developed which was based on two

assumptions. The first was that there would be enough memory available

to hold a few rows of the image and values for about 200 primitives at a

time. The second and more important assumption was that the unique

region labels assigned to the primitives were partially ordered. This

implies that at any row of the image if the lowest-label encountered is

n, then from then on fill the end of the image, no labels with values

less than n would be encountered. This is exactly the way the REACH

algorithm assigns labels as it scans from top to bottom. Actually the

restriction does not have to be followed strictly as long as the labels

are ordered enough when a "shrinking" condition occurs. The program

keeps track of property values in a buffer for regions as it scans along.

Ifa region label is encountered which would bring the buffer close to

overflowing, a "shrink" operation is called upon. This writes out to

the disc the property values for regions that have been completed, thus

shrinking or freeing up buffer space. The values written out are for

regions with labels one less than the lowest label in the current row.
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The scheme works extremely well and large images are processed without

any problems. The properties discussed before can be extracted by this

method. For example, size implies counting pixels of different regions

as the scanning progresses. Height is computed by keeping track of the

largest and least greytone of a region. Center of mass components are

computed by summing the row and column values for the region. Many of

the properties can be computed simultaneously in one scan. The second

moment matrix computation requires reading in the center of mass image at

the same time thus making it effectively a two-pass operation.

The property values are written out in tabular form to the disc.

This is essentially the form required by the clustering algorithm.

However, if a "property image" needs to be created, it may be done using

the property values table and if necessary the images with the primitives.

The center of mass image is one such example. The centers of mass

region were read in from the table and an image created with the corre-

sponding locations marked. Figure 5.2.1 shows the center of mass images

for the reahability set primitives.

Property images may be created from any of the other properties

as well. Take for example the height property. We can create an image

in which we can mark in each pixel in a primitive region of size N the

ialue h indicating that it is a part of a primitive having height h.

e;e ,atively, we can mark it h/N, indicating its contribution to the

-. i e area or perhaps mark the center of mass pixel with the value

-ages may be viewed to see the distribution of the height

*o the property image concept is the property density

- a r process to the frequency density image of

vnows an image for which a value W.h has
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Figure 5.2.1a. Center of Mass pixels for the Descending
Component regions.

Figure 5.2.1b. Center of Mass pixels for the Ascending
Component regions.
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Figure 5.2.2a. Absolute Height property image for M4A.
(Maxima Primitive)

Figure 5.2.2b. Absolute Height property density image
obtained by applying five 5x5 window averaging
iterations.
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assigned to each N cells of the maxima primitive. 'h' is the height and

W a weight. This image was iteratively defocused and the resulting

property density image is also shown. This like the other density

images, can be used as a texture information band in multispectral

clustering.

In order to examine and get a feel for the distribution of the prop-

erty values, another general set of programs were written to compute and

print out histograms, bar graphs, or the data in tabular form. This

helped very much in the selection of properties for clustering. Figure

5.2.3 shows examples of these.

Owing to lack of time, not much experimenting was done with property

density images. Instead, direct clustering was applied to the primitives

themselves. We discuss this in the next section.

5.3 Clustering

Clustering calls for the grouping of similar primitives into clusters

based on their attribute values. The clustering function is not an image

operator in that its domain is the attribute value table. It assumes that

any spatial information if necessary has already been included in the attri-

bute value table. Only when the final clusters have been determined, is

the primitive image accessed for relabeling.

Owing to the large number of cases (primitives) to be clustered and

lack of ground truth, an unsupervised clustering scheme was devised which was

stringent on core memory. In what follows we will discuss the clustering

method and the definition and properties of these clusters.

Suppose we have S primitives and each of these primitives is characterized

by K attribute values. The K attribute values are referred to as the
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"measurement vector" or "measurement pattern" or "spectral signature" of

the primitive. Because of this the clustering operator belongs to the

class of measurement space operators as it operates on the measurement space

defined by the data ranges of attribute values.

Inherent to any clustering operation is the distance or similarity mea-

sure used. This presented a problem as the components in the measurement

vector corresponded to values of different attributes. Arithmetic opera-

tions could not be used directly to compute say the Euclidean distance

measure. In order to preserve the individuality of each attribute, the dis-

tance used was the Mahalanobis distance for two vectors based on a set of

vectors. This is defined below.

Let T be a finite set of S measurement vectors {ul,u 2 ... ,u}. Each

<12
vector us is of the form us = soU,..., us>, where K is the number of com-

ponents of each vector. Also associated with each vector is a frequency

or weight vs. In our case this will be the size of the primitive region.

For each of the K components we first compute the average value over

the S vectors. That is compute:

S

= us, for k = 1,2,...,K

The mean vector 4 is then given by p = <ul ~ ,...,u k>. Next we compute

the covariance matrix as the direct product between (K x 1) column vector

(us - v) and its transpose (u5 - 0', which is a (1 x K) row matrix. It

is a K x K matrix.

Definition 5.3.1

Let us, u, and S be as given above. The covariance oatrix 4 is given by:
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S

The entire product is divided by the number of vectors S for normaliza-

tion. The Mahalanobis distance function between two vectors of this set is

given next.

Definition 5.3.2

Let T be the set of measurement vectors as given above. The Mahalanobis

distance function between two vectors ui and uj of this set, denoted by

d(ui,u j) or just dij is given by:

1J1

d(ui,u j ) = (ui - uj)' r- (u i - uj)

where

V- is the inverse of the covariance matrix of Definition 5.3.1

This gives a distance measure between two vectors at the same time main-

taining the individuality of each attribute. The limitation is that its data

dependent. If we add a few more vectors to the set, distance values between

vectors will change as the covariance matrix is changed.

The clustering procedure is an iterative one. In the first iteration

we consider each region as a cluster. Each iteration groups together the

clusters obtained in the previous iteration. At the same time, it generates

measurement vectors for the current set of clusters to be used for the next

iteration. A new measurement or signature that is generated for a group is

a function of the measurement vectors of the clusters that were put together

to fom that group.
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In generating this new measurement vector, it is useful to use a weight-

ing factor for this computation. For example, if primitives x and y are put

together in one group and one of the attribute-components was the height h,

then we need to define the height attribute value for the group. This can

be (hx + h y)/2. However, if the two primitives differ in size considerably

its better to compute this new height value as (vxh x + v yh y)/(v x + Vy),

where vx and vy are the sizes of the two primitives which we use as weights.
The size for the group will be (vx + VY). However, this weighting may not

be desirable for all the attributes. For example, for the orientation

attribute we may want the orientation to be the average orientation regard-

less of the size of the regions. In the implementation of the clustering

algorithm it was possible to indicate which attributes should be weighted

and which should not.

We now look at a clustering scheme for a set of measurements patterns.

This method is called "Orbit clustering", owing to the similarity in

definition of the clusters with that of orbits of states in automata theory

[Bavel (1968), Chapter 7]. We describe the process first in a purely mathe-

matical setting to emphasize that it is a pure clustering operator, and not

restricted to image category clustering.

We are interested in finding for each vector the vector closest to it

in T. Owing to the finiteness of T we are always guaranteed of finding one,

no matter how far away it may be. However, if the distance of a vector to

its closest neighbors is too much, we want to treat that vector as isolated.

This idea can be expressed by the following function.

Definition 5.3.3

Let T be as described above. A function f:T - T is called the Nearest

Neighbor function and is defined by:
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i(Min

f(ui) = uj where X >dij= 1 <M (d }
S is

= ui otherwise

In the case of two or more vectors being equidistant from a vector,

anyone is chosen arbitrarily. The exact formulation of X is not important

right now. It is sufficient to realize that it provides a check to ensure

that we do not group together vectors which are too far away.

Definition 5.3.4

Let T and t be as given above. The Orbit of a vector, denoted by 0(u),

is given by:

O(u) = {fn(u)In e }, where I is the set of non-negative
f ) f integers, and

f n(u) = f(fn - 1(u))

The orbit of a vector "u" is a set of vectors. The vector u is called

a generator of O(u).

Before we can see how we can use the notion of orbits in clustering,

some results have to be established. Clearly, in order to generate O(u),

we should not have to look at f composed with itself, infinite number of

times, as the definition suggests. The lemma below shows that that is

indeed true. To generate 0(u), the function f has to be composed of a finite

integer number of times. This is a direct consequence of the finiteness of

T. In extreme cases O(u) may consist of u alone or may encompass T entirely.

Lemma 5.3.1

Let T = (ulU 2,...,u S} be a finite set of measurement vectors. Then

the orbit of vector u is given by:
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O(u) {fn(u) I 1< n <m} where m e

Proof

The orbit of a vector is found by successive applications of the func-

tion f. Each application generates another vector. Suppose that as we

apply f, we mark off the different r e T as being included in O(u). We

keep track to see if f generates any vector which is already included. Two

possibilities can occur.

Case 1 -- all the elements of T are marked as being in O(u), without

encountering any of these twice. In this case exactly (S - 1) application

of f must have been made, where S is the cardinality of T.

In the (S - 1) + 1 = S application we will _generate a vector which is

already a part of O(u), and successive applications will also generate vec-

tors already included in O(u). Thus, O(u) = T and m = S - 1 here.

Case 2 -- suppose in the kth application, k < S, we encounter a vector

which is already included in O(u), i.e., fk(u) e O(u). Then:

f(fk(u)) = fk + 1 (u) O(u), for f(fk(u))

fk wawill generate the same vector, the first time fk(u) was encountered, and

that has already been included in O(u). Similarly, f(f(fk(u))) = fk + 2(u)

will also give a vector already included in O(u). In general fk + J(u),

j e I will be vectors which have been included in O(u) previously. Thus,

further generations will not be necessary and m = k - 1.

In each case m is a finite number and gives an upperbound to the

number of compositions of f.

f is a function that generates the next vector in the sequence of pro-

ducing the orbits. We now need a function which goes the other way. This
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I
is a function that when applied to u e T gives us the set of all predecessor

vectors of u. A vector uj is called a predecessor vector for ui, if and only

if there exists a n e i such that fn(u.) = ui. Actually it is more convenient

to define this predecessor function as a set function, rather than a point

function. This function is denoted by "g", and its domain and range sets

are the power set of T. The definition follows.

Definition 5.3.5

Let T be a set of measurement vectors as described previously. Let

RG T. The Predecessor function is given by g:9(T) + 9(T). The Predecessor

set of R, denoted by g(R), is defined by:

g(r) = fu e T I fn(u) E R, n E }

and

g(o) = 0

The definition states by applying f sufficient number of times to

u e g(R) we generate a member of R.

The clusters that the Orbit clustering operator creates can be expressed

using the function g. Simply, the clusters generated in one iteration from

the set of vectors T is the set:

{g(O(ui)) I 1 < i < S}, where S = #T

A cluster is determined by generating the orbit of a state and then

taking its predecessor set. It remains to show that these clusters are

well defined. Each vector is assigned to one and only one cluster. That

each vector is assigned to a cluster is evident from the definition of the

set of clusters. The fact that it can only appear in one cluster is given

by the lemma below.
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In the following we will refer to a vector ui e T by its index "i".

Thus, O(u) becomes 0(i). This is only done for notational simplicity.

We will also make use of the fact that the composition of f with itself

is commutative. For two integers a and b we have:

fa(fb(u)) = fa + b(u) from definition of f

= fb + a(u) by commutativity of addition

= fb(fa(u)).

Lemima 5.3.2

Let T be a set of vectors denoted by {1,2,...,S}. Then for all i,

j e T either:

g(O(i)) n g(0(j)) =

or

g(O(i)) = g(Oj).

Proof

Suppose g(O(i)) n g(O(j)) o s. We need to show then that:

g(O(i)) = g(O(j))

Now g(O(i)) n g(O(j)) # 0 implies that there exists k E g(O(i)) and
n i

g(O(j)). Further, k e g(O(i)) implies f (k) 0(j), for some ni E I

and k e g(O(j)) implies fnj(k) e O(j), for some nj £ .

Let p E g(O(i)). To show that p E g(O(j)):

p s g(O(i)) implies fn1 (p) F O(i), for some nI

ni nl I
Since both f n(k) and f (p) are members of O(i), then at least one

of them must generate the other by successive application of f. It is pos-

sible that both can generate each other, but that does not matter.
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Case 1 -- if f 1 (k) generates f 1(p), then

f 2(f i(k)) = f 1(p), for some n2  E 1

n.
Applying f to both sides we have

fn~fl~))= fjf2(fi(k)

= f 2(fnj(fik

But fnj~) (k)())

n..

Bu f ~f~) J~k 0() sicef 3 kj)0()

nl + n + n
Therefore, f 2~ 1 (k)) E 0(j) implfiies p f g((j) ie.

fn(f(l )) O (j). hc mlespegOj)

Thse lem2 asa if gnrtwo clus)teshaene or more vector in c()oomon

tn3 te mus belyn th sam clutr Thues weahvectrisindt n

and onlyte cser, and the) cButersware whoell defined.y n

Therfore g(Oi)) g(Oj94

By aymtirgmntcnesontatgOj)Sg(~ . Hne
g(O~~i', = (.)



Having obtained the clusters in one iteration, we need to generate

the measurement vectors for this new set of clusters. This is done according

to the definition below.

Definition 5.3.6,
/

Let the set/of vectors which form a cluster be denoted by the indices

{n1,n2,.... nr1./ The frequency V and the measurement vector <U1,U2, ... ,uK>

for this clusteor is given by:

r

j ' j

uk Vn unj)/ V, if weighting was specified or
Ij =I unj  n/

Uk u k /r, if no weighting was specified.

In summary, one Orbit clustering iteration consists of generating the

clustersg(O(ui)), i = 1,2,...,S, and the means for the next iteration. This

procedure is repeated until the number of clusters is reduced to less than

some number desired.

This clustering method has one drawback. It is agglomerative in

nature as it only coalesces clusters, but never splits one that may be

badly defined. It is important, therefore, that we have some control over

which elements are being put together. The parameter x, mentioned before,

is one such regulator. It ensures that if the minimum distance, in metric

space between a cluster and its neighbor, is too much, the cluster is not

grouped with any other. In that iteration it forms a group of its own.
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The implementation of x can be done in different ways depending on

what is desired. For example, one may have some idea of what the distances

in measurement space mean. In this case the maximum allowed can be fed

into the program before each iteration. Another way is to define X in a rela-

tive manner. This is done by computing the average (p) and the standard

deviation (a) of the minimum distances. We denote by di , the distance to

its closest neighbor (minimum distance) for cluster "i"

T= 
(d - )2) /Sd i /S an1 (

The cutoff A is given by A = u + ea, where e is some real number. Here the

cutoff is controlled with respect to the distribution of the data. If a is

very large, then a small e or even negative value may be entered. This ensures

that the cutoff is reasonable. There are other ways of introducing X. In the

implementation of the algorithm only the above two methods were included.

For each iteration the user is asked for 0 and the absolute maximum distance

allowed. The actual cutoff chosen is the minimum of the two. This gives a

little additional control.

The use of the clustering process on image data can be described as

follows. First a table is generated which contains the size and attributes

of the primitives we wish to cluster on. These are obtained by the property

extraction scheme described previously. For each attribute it is also indi-

cated if weighting is to be used or not in computing group measurement vectors.

The table gives the initial set of measurement vectors and frequencies for

the first iteration of the Orbit clustering operator. The operator is applied

repeatedly until the number of clusters have been reduced to what is desirable.
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During the clustering, we keep track of which cluster each of the original

regions belongs to. The primitive image containing these regions is then

relabelled according to the cluster codes. This gives us the clustered image.

We mentioned before that one drawback of this method was that it only

coalesced clusters and never checked to see if any needed to be split.

This, however, does have an advantage in an indirect and practical way. The

execution time is reduced considerably, but even more, the core requirements

are minimal. Most clustering procedures which group and split clusters

require memory in order of S2, where 'S' is the number of elements being

clustered. This scheme requires order of S. That is very useful for large

data sets. The execution time is still order of S2 per iteration, because

for each vector the rest of the vectors have to be examined to find which

one is closest to it.

The reader may have noticed some similarity between the orbit cluster-

ing described above and the method of single linkage clustering CSneath and

Sokal, 1973; Anderson, 1973; Hartigan, 1975]. This similarity exists only 4

for the first iteration. Being agglomerative methods, both begin with t eC

assginment of one case per cluster, and then looking for nearest neighbor

links. In general, in the single linkage scheme, two clusters may be merged

if any of their members lie close enough. That is not so for the Orbit

clustering method. There the links are computed between cluster centroids

and not between pairs of individual members of the clusters. The centroid,

which is computed using the weighted means of the members of the cluster,

is a much truer representative of the cluster's position in measurement space.

Links based on centroid coordinates are, therefore, a better critiera for

merging clusters. Their use also reduces the problem of "chaining" which
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tends to occur when using single linkeage. Furthermore, the use of control

parameters ensures the merging of only those clusters which lie close enough

to each other. Single linkage clustering procedures do not include these

regulators.

In any iteration, it is not possible to specify the number of clusters

desired. That is really a function of the data set and the thresholds

entered. For this very reason, the process is sometimes referred to as

unsupervised clustering. In supervised clustering schemes, the number and

kinds of clusters are determined before the clustering takes place. This

requires some prior knowledge about the data. In image category clustering,

the information is usually entered as ground truth data. Without it, it is

difficult to perform any supervised clustering. In the unsupervised case,

no prior information is necessary. Only after the result is generated, does

one sit down for analysis with the ground truth.

The clustering scheme was applied to the various to the extrema and

reachability set primitives. The results of this and post processing are

discussed in the next chapter. To close this one, the last section looks

at attribute values from the strong texture measure point of view.

5.4 Strong Measures

The previous sections described the weak texture measures as we were

mostly looking at the distribution primitives and their attributes singly.

More complex measures would involve a definition of the spatial relationship

between these primitives. This was not part of the research carried out,

but is included here as a natural extension of the primitive-attribute

values for stronger measures.
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Including spatial relationships gives rise to second order counts and

co-occurrence. In the case of the pixel primitive and its gray tone attri-

bute, spatial relationship was distance between pixels. These resulted in

the gray tone co-occurrence counts. This idea may be extended to any primi-

tive. Co-occurrence of primitives with attribute values gives rise to the

concept of the Generalized Co-occurrence Matrix (GCM) first investigated

by Davis et al. (1979).

The first step is to decompose an image into its primitives which we

denote by the set Q. Let T denote the set of primitive properties such as

size, shape, mean gray tone, etc. Also let f be a function assigning to each

primitive in Q a property of T. Finally, let S CQ x Q be a spatial relation

paring all primitives which satisfy the spatial constraint. The Generalized

Co-occurrence Matrix (GCM) P is given by:

#{(ql,q 2) e S I f(ql) = t1 and f(q2) = t2}P~tl't2) = #S

P(tlt 2) is the relative frequency with which two primitives co-occur in the

specified spatial relationship, one having the property t1 and the other having

the property t2.

The primitives Davis et al. used were edge detectors with directional

information. The spatial relationship was in form of a general constraint

predicate which measured spatial proximity by two primitives being within a

distance "k' or a primitive being the nearest neighbor of the other. These

predicates could be combined with orientation constraints as well to emphasize

directionality if needed. It should be noted that in the spatial relation

using nearest neighbor predicate, the GCM is no longer symmetric.

Davis et al. compared GCM's and the gray tone co-occurrence matrices on

the same set of images and obtained much better discrimination with the former.
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The computation of the GCM is a much more difficult task in the general

case, especially if the spatial relation is complex. Davis et al. simplified

it by making their primitive size that of a pixel, and counting pixels that

co-occurred in the spatial relationship. The same thing may be done if the

primitives were extrema or ascending/descending components. Each could be

represented by a single point, preferably their center of gravity. Counting

could then be done by laying a window around each pixel. This would guarantee

that no primitive pair would be counted twice. However, it would be nice to

have a general program which would count proximity for regions of arbitrary

size. This would be complex as one would have to keep track of which pairs

of primitives had been counted and which had not.

Another way to solve the counting problem is to define spatial relation-

ships as adjacency. The method involves growing the primitive regions out

till they touch each other. From this image a region adjacency graph (RAG)

denoting which primitives are adjacent can be generated and counting can be

carried out on it. Figure 5.4.1 shows such a filled image. This was the

result of growing the min-max axtrema till they touched each other.

A brief note here about the terminology weak and strong measures. We

have been characterizing first- and second-order statistics by the above two

terms. Actually the difference between their performance may not be as wide

as the terms strong and weak suggest. They were chosen here for want of

better ones.

"Weak" measures are not really that weak. As we have seen, a lot of

texture information for discrimination and segmentation can be extracted

from these statistics. The question to ask is whether there is anything that

can be obtained by second-order measures that could not be extracted by

first-order methods? Putting it another way, given a second-order statistic,
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Figure 5.4.1a. Uniquely labelled extrema of M4A.

Figure 5.4.1b. Extrema labels grown out to determine

adjacency.
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is there a set of first-order statistics which used in combination with each

other or iteratively, that could perform the same task? As an example, let

us look at the problem of discriminating between the two images of Figure

2.1.1. We stated that based on histograms these few images could not be

distinguished, but co-occurrence matrices could separate them. However, there

are other first-order measurements that can. An example is to compute the

root mean square (RMS) error between the images. The RMS error, E, is

defined as follows for two images I and J of the same dimensionality, Nr rowrI
by Nc columns:

S(I(i,j) J(i,j)) 2  112

E Nr x N

This is a point by point comparison and uses no spatial information.

If the error is large compared to the gray tone range, the two images would

be considered distinguishable.

Another simple weak operation to distinguish them would be to run a

2 x 2 box filter and then look at the histograms. As seen from Figure 5.4.2

the resulting histograms are quite different and thus can distinguish the

image. The images are smaller as we lose one row and column owing to edge

effects in the filtering operation.

At this time there is no clear answer to the question posed above.
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Figure 5.4.2. Effect of a 2 x 2 average filter on images of Figure 2.1.1.
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6.0 CLUSTERING RESULTS

We now look at the results of applying the clustering scheme

described in the last chapter. The clustering was carried out on both

the photographic and radar bands of the images provided by ETL. Since

it would be impractical to describe all the processing that was done,

we will look at some results of processing four subsections of the ETL

imagery. These subsections were selected for their representative

textures. One of these is the image M4A encountered previously. This

and other images are discussed in the sections to follow.

Subsections of the original 512 x 512 images were chosen instead of

the entire image owing to computer limitations. The development of the

software and processing was done on a PDP-15/20 with the RSX Multi-

Access operating system. While this system has a lot of flexibilities,

it severely restricts the size of the image data files on the disc. As

a result the largest image that could be processed was about 200 x 200.

Most of the images selected however were 128 x 128, as this gave the

optimum performance in disc storage and processing times. The

algorithms developed though are quite general and can easily process

larger images if hardware limitations are removed.

6.1 Attributes for Clustering

As mentioned before the clustering operator is not restricted to

image data but 4as set up to cluster any set of cases for which an

attribute value table was available. Here the cases were the primitives

- maxima, ascending components etc., and the attribute value table was

the property values for the various attributes discussed in Section 5.1.

Thus the clustering process first involved a generation of an attribute

104



value table for the primitives in question, by the property extraction

operators. The table contained a property value for each attribute

specified for each primitive. Clustering was then performed on this

table. The resulting cluster code list was used to create the clustered

image from the corresponding uniquely labelled image of the primitive

regions. This separation of the clustering operation from tne image

domain was done to keep the clustering general, as well as to maximize

core work area during processing.

Of the properties discussed in Section 5.1, five were selected and

used extensively for all the images. These five were:

1) Size of the primitive,
2) Maximum gray level,
3) Minimum gray level,
4) Number of levels in the primitive and
5) Average gray level.

The size of the primitive is the number of pixels in the primitive.

This information was always required by the clustering operator, whether
7

or not it was specified as a property to be used. As given in

Definition 5.3.6 this size corresponds to frequency and was necessary

for computing the measurement vectors for the new groups, for the next

clustering iteration, if weighting was specified for a particular

attribute. In the actual implementation of the code, two types of

weighting schemes were allowed. To compute the attribute value for a

set of cases in a group, one could either weigh by the pixel sizes or

by the number of regions comprising each case. If the region sizes were

about the same, the latter option seemed more feasible. Essentially the

second option amounts to assigning a weight of '1' to each row of the

initial attribute value table. Weighting by number of regions was
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specified for all properties except the region size itself, as that

would have been meaningless. No weighting option was specified for the

size property.

The maximum gray level corresponds to the absolute height for the

maxima and descending components (valley height for ascending

components). The minimum gray level corresponds to peak descent for the

descending components (valley depth for the minima and ascending

components). The number of levels is the range (= Maximum-Minimum+l)

of levels for the descending and ascending components. It gives a

measure of the relative height of a peak or valley. The average level

is the average graytone over the primitive region.

For the extrema primitives only the maximum gray level is

meaningful. The others are redundant or of little value. For example

the number of levels for an extremum primitive is always one, and the

minimum level is always the same as the maximum level. The sizes for

most extrema is one with very little spread. The five attributes are

more meaningful for the reachability sets. Also the distributions of

these attributes are more spread out as can be seen from the histograms

of Figure 5.2.2. This would allow for better clustering. Since the

maximum/minimum gray level for the extrema was the same as for the

corresponding reachability sets, only the latter primitives were used

in the clustering experiments. Not only did they include all the

meaningful properties of the extrema, but owing to their larger size,

they gave a better spatial definition to the different textured regions

of the image.
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To get a visual idea of how well these attributes characterised

regions of different texture, property images were generated for the

reachability sets and the five attributes mentioned above. Along with

the histograms these images helped suggest which properties might be

more useful for clustering.

The property images were generated the same way as described in

Section 5.2. Figure 6.1.1 shows these images. The maximum level

(property 2) looked the best for both reachability sets followed by the

average level (property 5) and the minimum level (property 3). The

number of levels (property 4) seemed very mixed and did not suggest

direct segmentation. It could perhaps have been more useful as a

secondary component in the measurement space clustering. The size

property (property 1) attribute was a little more consistent but not

very illuminating by itself, except to bring out some large flat no-

texture regions.

The clustering was carried out using different combinations of the

five attributes mentioned above. Examples of these are given in the

following sections. It sould be noted that property 4, the number of i

levels in a primitive region, could not be used with both the maximum

and minimum gray levels. This is because it is a linear combination of

the two. Using all three attributes together would make the covariance

matrix singular. Thus the combinations of attributes that were allowed

was restricted slightly.

Before discussing the processing on the individual images there are

two points that remain to be covered. The first deals with the level

of clustering. As mentioned in Section 5.3 the clustering operator is
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Descending Components Ascending Components
Property 1 - Size of primitive regions.

Descending Components Ascending Components
Property 2 - Maximum gray level.

Descending Components Ascending Components
Property 3 - Minimum gray level.

Figure 6.1.1. Property image for the Descending and
Ascending components of i14A. Similar regions
indicate regions with similar property values.
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Descending Components Ascending Components
Property 4 - Number of gray levels.

Descending Components Ascending Components
Property 5 - Average gray level.

Figure 6.1.1. ( continued
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a coalescing one. In each iteration the number of groups decreases or

remains the same. The latter occurs if the user-entered thresholds are

too restrictive. A problem with this and for that matter all non-

supervised clustering algorithms, is to know when to stop. In a

supervised environment the number of final clusters is usually known or

specified at the beginning. Here without extensive ground truth it

becomes in part a guessing game. The problem is further compounded by

the noise in the image. Even if we were to know that there are five

classes in the image, it does not follow that the non-supervised

clustering should yield exactly five clusters. Usually we would have

to settle for more than five groups as some clusters may be noise

regions of the image. The best way to solve this problem is to examine

images for the final four or five stages of the clustering. By then the

number of clusters has been reduced to a managable range and each can

be examined individually. An example set of images is given in the next

section. In our processing, along with the examination of the clustered

image, a table of cluster groupings with measurement vectors was also

printed and analysed, for each iteration. Based on these, the best

stopping point was determined. The cluster groupings indicated how many

original regions there were in each group. Thus if in a late stage in

the clustering, one group consisted of only one region, then it was

either a noise region or one with an extreme attribute value. An

examination of the measurement vectors printout would clarify this.

Instances of this occured in many images as there was usually atleast

one flat region with an extreme size value.
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The second point deals with the spatial generalization operation on

the clustered image. This is sometimes also referred to as region

growing. The idea here is to incorporate the unclassified part of the

image into the segments determined by the clustering. The unclassified

area consists of pixels which did not fall into the unique reachability

sets. The premise behind the spatial generalization is that the pixels

in the unclassified area adjacent to the primitive region, very likely

belong to the segment that the region has been assigned to. This is

especially true of unclassified pixels which are surrounded by primitive

regions of the same texture class. By growing these regions out, the

unclassified pixels are included and a segmentation of the entire image

is achieved. The growing is an iterative process, each iteration being

one scan of the image. In succesive iterations the regions grow one

pixel at time, until they meet each other or the picture edge. The

growing is terinated when the whole image is filled or by fixing the

number of iterations. The definition below summarises this.

Definition 6.1.1

Let T { III:Zr x Zc L } and T' = { I'II':Zr x Zc - L I be a set

of domain and range images. L is a set of labels and let N(i,j) denote

a neighborhood for cell (i,j). An image operator GR:T - T' is a region

growing operator if GR(I) = I' and

a) If I(i,j) 0 0, then I'(i,j) = I(i,j)
b) If 1(i,j) = 0, then I'(i,j) = 0 if #{(k,l)1(k,l) E N(i,j)

& I(k,l) 4 01 = 0
else I'(i,j) = I(k,l) for (k,l) N(i,j)

& I(k,l) 0.

The above is for one iteration of the operator with '0'

representing the unlabeled class. Statement (a) says that pixels that

ill
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are labeled are left labeled. The first pz t of (b) states that an

isolated unlabeled pixel is left unlabeled. A pixel is only labeled if

one of the adjacent pixels is labeled. The last part of (b) states that

an unlabeled pixel is assigned the class of one of its labeled

neighbors.

The neighborhoods that are used are the four and eight

neighborhoods of a pixel. These are used alternatingly to ensure an

isotropic growth. For most images only a few iterations were needed as

the primitive regions were distributed quite evenly. The region growing

can result in erratic growth if the initial regions are far apart. In

this case the number of iterations should be fixed.

A complementary operator is the region shrinking operator. This

takes pixels on the edges of regions and marks them as unclassified,

i.e. it 'shrinks' the regions. The purpose of this is two fold. Firstly

it automatically gives us the boundaries on a completely filled image.

Also when used alternately with the region growing operator it rounds

out region boundaries and tends to eliminate small noise type regions.

The resulting image is more homogenous looking. See Section 6.2 for

examples. The definition for this operator is qiven below.

Definition 6.1.2

Let T, T', N and L be as in the previous definition. An image

operator SR:T - T' is called a Region Shrinking operator if SR(1) = I'

and

a) If l(i,j) 0 0, then '(i,j) = 0
b) if l(i,j) 0 0, then I'(i,j) = 0 if I(m,n) I(i,j) for

some (m,n) E N(i,j),
= I(i,j) otherwise.
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Again the neighborhood here can be the four or the eight

neighborhood. In the examples presented the eight neighborhood was

used. The pixel is 'shrunk' if any of its neighbors differs from

itself.

6.2 Processing Image 'M4A'

Since it was the first to be processed a lot of work was done on

this image. The work was carried out to fine tune the parameters for

the clustering operation and also to determine which attributes gave

better results.

As described in Section 3.4, M4A is a 128 x 128 subimage of the

fourth ETL image. Geographically it is a small section of Union City,

north of Newark, a suburb of San Francisco. The area contains a trailer

court at the bottom left and residential houses with trees over most of

the picture. At the top left corner are fields, some of which are quite

dark. Running below the trailer court is a highway separating the court

and an orchard located at the very bottom left. A little left of the

center at the bottom is another dark field which is part of the area

between the highway and its exit ramp lane (see Figure 3.4.1).

The residential area which covers about two-thirds of the image is

not all one homogenous texture. This could be because the houses which

were built and developed at different times, had different spacing

between them. Compared to the texture of the trailer court it is much

coarser. Eroadly speaking, the image has four or five texture regionis.

In the processing to be described below our aim was to get the best

definition for these regions.
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The analysis was carried out on both the photographic and radar

bands. The latter will be discussed later. On the photo band both ':he

descending and the ascending reachability sets were clustered. These

images were illustrated back in Figure 3.4.7. Below, the processing on

the descending components is presented first.

In the example pictures which follow, the different clusters are

indicated by different colors. It is not possible in the clustering

algorithm to fix a cluster number (code) to any one group, for example

the residential area. The codes are assigned to the groups in the order

in which they are encountered and the manner in which the algorithm

merges them. A region could come out as cluster number two in one

processing run or as number four in an another. The colors are

consistent in that all regions in the same cluster or class have the

same color. Also the mapping of the cluster number to color has been

maintained over all the examples. This information is not of much use

except to identify the cluster number. There are twenty colors which

show twenty classes. If an image has more than twenty classes, cluster

codes twenty and higher have the same color. As most images being

analysed had around ten classes, this was no problem. The mapping of

colors to cluster codes is given in the appendix.

The best $esult on the descending components was obtained using the

size and the maximum height properties (properties 1 and 2). To get an

idea of the clustering process, the results of the final five iterations

for this run are shown in Figure 6.2.1. The corresponding spatially

generalized images are also shown. These images have 25, 19, 16, 11 and

7 classes respectively. In Figure 6.2.1a even though the original 536
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Clustered Image Generalised Image
(a) Twenty five Clusters

Clustered Image Generalised Image
(b) Ninteen Clusters

Clustered Image Generalised Image
(c) Sixteen Clusters

Figure 6.2.1. Descending components clustering on photo band
of M4A. Properties 1 and 2. Five iterations.
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Clustred mageGeneralised Image
(d) Eleven Clusters

Clustered Image Generalised Image
(e) Seven Clusters

(f) 'Shrunken' image with (g) Smoothed spatially
boundaries. generalised image.

Figure 6.2.1. (continued)
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regions have been reduced to 25 clusters, the picture is still quite

complex. Further iterations bring out more order. In 6.2.1b the

residential area begins to emerge but the trailer court still contains

too many segments. By 6.2.1c this has also taken shape and the

residential area consists of essentially three classes. In 6.2.1d some

of the smaller clusters for the flat fields have begun to emerge, but

the residential region is still mixed. Finally in 6.2.1e both the

residential and the trailer court clear up to yield the image shown.

The discontinuity in the middle of the trailer court is an open ground

with perhaps trees. It connects the driveways of the different sections

of the court. This was understandably merged with the residential area

as it seems to have the same structure.

The residential area still seems to contain two classes and further

clustering could perhaps have cleaned this up. However it would have

been at the risk of merging other major regions. In Figure 6.2.lf the

'shrunken' image with the boundaries between the different regions is

shown. Also in Figure 6.2.lg the spatial generalization of 6.2.1f is

presented. On comparison with the filled image of 6.2.le it can be seen

that the process smooths out boundaries and eliminates small mislabeled

clusters inside large regions. This is the smoothed spatially

generalized image.

The final segmented image of Figure 6.2.lg is far from ideal but is

good for segmentation based only on texture, and no other properties of

the image. There are some errors. Some of the trailer court primitives

had merged quite early on (Figure 6.2.1a) with other primitives in the

top center residential area of the image. Once this occurs, it is not
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possible to separate them. This pattern was observed in many of the

runs and an examination of the picture suggests that these primitives

are similar in the properties being used and thus not separable. The

two part structure of the residential area was hard to eliminate for

most all the processing. This is because the texture of this area is

much more complex, and again the attributes being used are not enough

to capture this complexity. For example we did not use any information

regarding regularity of patterns. A glance at the image shows that some

houses are arranged in lines along with trees. Using a regularity

property we might be able to separate out this patterned texture from

the irregular arrangements of houses in other parts of the image.

The results on the flat fields are mixed. Most of them came out

quite well but some of them are still split. The reason for this is

that we only define the descending components on the bright parts of the

image. Thus we only pick up part of the dark fields. The rest of the

pixels of the field fall into the non-unique class. Correspondingly for

the ascending components we only pick up the darkest parts of the field,

with the rest of the field pixels again falling into the non-unique

class. This is a basic problem with the reachability sets. The light

and dark flat fields result in 6ifferent spatial definitions when using

ascending and descending components. The different reachability sets

capture different aspects of fields. One would like to cluster both

sets at the same time, but this would involve the use of properties

which are common to both, such as size and shape attributes. There are

not many of those. The peak heights of descending components cannot be

compared directly to the valley depths of ascending components.
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Another basic problem with the reachability set approach is that

when there is sufficient texture (in terms of number of extrema) they

work well. However when the texture is very low or non-existent it

becomes difficult for the reachability sets to capture the shape and

properties of the area. The result is that we try to define the entire

flat region by one primitive. The flat fields are regions of little or

no texture and contain only one or two primitives, while well textured

areas like the trailer court have hundreds of regions. Some special

methods may have to be included to capture the flat areas properly.

As mentioned before several different combinations of properties

were used for clustering. Some examples of these are given in the next

set of figures. These and the rest of the figures to follow, show

the clustered image of the primitives and the smoothed spatially

generalized fully segmented image. While it is difficult to say

precisely which are better, one general trend that emerged was that

using 3 to 4 attributes would not necessarily give better results than

using 1 to 2. As a matter of fact using four properties (properties 1,

2, 4 & 5) gave the worst result with a lot of mixing early in the

processing. This was somewhat surprising as one expected that the

greater the number of attributes the more is the information available

for clustering. Since using more attributes increases the processing

time substantially, these results suggest that one could achieve about

the same quality results and save processing costs by carefully choosing

a fewer number of attributes.

Figure 6.2.2 shows the clustered descending components and the

spatially generalized file for properties 1, 4 and 5. This image has
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Clustered Image Generalised Image

Figure 6.2.2. Descending components clustering on photo band
of M4A. Properties 1, 4 and 5. Fourteen
Clusters.

rIVY

Clustered Image Generalised Image

Figure 6.2.3. Descendinq components clustering on photo band
of M4A. Property 2. Three Clusters.
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fourteen groups. Out of the fourteen, eight groups contained two or

less regions. Of these eight, three are large flat areas while the

others can be considered noise. Thus, effectively, the results shows

six textured areas. This was one of the few images in which the trailer

court came out separate, but as can be seen both it and the residential

area are quite broken. Further clustering only resulted in merging

these two categories together. One thing to note here is that the

pattern of some of the small groups in the residential area, corresponds

to the light and dark shading within the same area. This pattern was

also noted in a few other runs. This suggests that in these cases,

because of its coarse two level texture, some of the primitives of the

residential area are being treated as the flat fields; i.e. they are

being clustered separately.

Figure 6.2.3 shows the corresponding result of using only the

maximum gray tone property (property 2). The 536 primitive regions have

been reduced to three groups here. No size information was used. The

trailer court has merged with parts of the residential area as in Figure

6.2.1, and the bright field just above it. These are areas of similar

brightness on the image. The dark fields also come out together along

with some darker patches of the residential zone.

Finally figure 6.2.4 shows two iterations using the average gray

tone property. These images contain seven and four clusters

respectively. Of the four one is a small single region pixel. In

general there is good separation between the texture classes.

Unfortunately the orchard area at the bottom left has been labelled as

residential, and the definition of the trailer court leaves a little
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Clustered Image Generalised Image

(a) Seven ClustersiI

Clustered Image Generalised Image
(b) Four Clusters

Figure 6.2.4. Descending components clustering on photo band
of M4A. Property 5. Two iterations.
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more to be desired.

Next we look at the ascending components.

The results with the ascending components are poorer compared to

the descending components. There are two reasons for that. First is

the poor spatial definition by the ascending component primitives for

the texture classes. A lot more of the pixels fell into the non-unique

area and there was larger separation (black area in Figure 3.4.7b)

between the primitive regions. Some areas like the top left regions

hardly have any primitives. This of course would lead to inaccurate

spatial generalization. The second problem resulted in poor clustering.

In many runs there was considerable merging and mixing of primitives

of different classes. As this was noticed quite early in the

clustering processes, when the clustering thresholds are much lower, it

seemed that the algorithm was having difficulty achieving good

separation. The problem was that the minimum gray tones for a lot of

the regions were zero. Thus they were indistinguishable on this

measure. These regions were about all equally dark. For the descending

components the corresponding property of maximum gray tone had a much

wider variation. Some of the larger flat areas did emerge when the size

property was included. However the residential part was still mixed.

One item that did come out consistently was the exit ramp road, but by

later stages of clustering it was usually incorporated with the

residential area.

Two results for the ascending components are shown in Figures 6.2.5

and 6.2.6. The first is based on the average gray tone (property 5) and

has seven clusters. Of these, two contain two or less regions. Some
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Clustered Image Generalised Image

Figure 6.2.5. Ascending components clustering on photo band
of M4A. Property 5. Seven Clusters.

Clustered Image Generalised Image

Figure 6.2.6. Ascending components clustering on photo band
of M4A. Properties 2, 3 and 5. Four
Clusters.
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definition has been obtained for the trailer court but it is quite poor.

Most of the image has been classified as residential including the

fields. The second result in Figure 6.2.6 is based on properties 2, 3

and 5. There are four clusters. There is a lot of merging of the flat

texture areas and again the flat fields did not separate out.

Clustering was also attempted on the radar band for image M4A.

While it was consistent with the image information, the results were not

as good as those from the photo image. As can be seen from Figure

3.4.1a, the radar image was quite dark in places. This fact is verified

by looking at the local and true extrema of the radar band in Figure

6.2.7. The minima are red, maxima green and the transition yellow. The

flat areas for the local extrema image are black. There is a large flat

(with gray tone 0) area bottom right. The correspcnding reachability

sets are shown in Figure 6.2.8. The number of regions is smaller

compared to the photo image extrema but the average size of regions is

much ' rger. The number of descending and ascending components is 423

and 316 respectively.

The image is quite poor and as a matter of fact there is not too

much texture one can determine from it. Clustering was only performed

on the descending components image. The ascending components were based

too much on parts of the image which had zero gray tone and did not seem

too useful. Two results are shown in Figure 6.2.9 and 6.2.10. Again

these images suffered from poor spatial definition for the texture

classes. Also the residential area took too long to cluster causing it

consistently to merge with the trailer court. Figure 6.2.9 shows the

results using the size and maximum height properties (properties 1 & 2).
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(a) Local (3x3 window) (b) True

Figure 6.2.7. Relative maxima (green) and minima (red) for
the radar band of M4A.

(a) Descending Components (b) Ascending Components

Figure 6.2.8. Unique reachability sets for the radar band
of M4A. 423 and 316 regions respectively.
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Clustered Image Generalised Image
(a) Ten Clusters.

Clustered Image Generalised Image
(b) Three Clusters. t

Figure 6.2.9. Descending components clustering on radar band
of M4A. Properties 1 and 2. Two iterations.

Clustered Imag _ Generalised Image

Figure 6.2.10. Descending components clustering on radar band
of M4A. Property 2. Three Clusters.
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Two clustering iterations are shown. The first shows ten classes while

the second three.. The trailer court has emerged in the first image but

it is still merged with parts of the residential area. Just a little

more clustering yields the three class image. Even though there is a

large amount of mixing, the shapes of the areas do match with the more

distinct areas of the radar band.

Figure 6.2.10 is a little better result again with three classes.

This is based on the maximum gray tone property. The match up between

it and the high reflectance (bright) areas on the radar band is very

close.

The radar band was quite disappointing for M4A. Some pre-

processing attempts to enhance the radar band were also made. In one

an equal probability quantization to 32 levels was done. While the

image looked sharper, there was no significant change in the clustering

results.

6.3 Processing Image 'M3A'

Subsection M3A extracted from the third ETL image is also 128 x 128

in size. It is over a section of the city of Fremont, Ca. and contains

a residential area for the most part. The bottom right quadrant

contains a creek (Alameda Creek) and there are some gravel pits in the

bottom parts of the image. Across the top left corner of the picture

is a railway line and a road. There are some subtle changes in texture

of the residential class and it was hoped that the algorithm would pick

them up.

ThE two bands of the subsection are shown in Figure 6.3.1, with the

local and true extrema in Figure 6.3.2. Again the minima are red,
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maxima green and the transition region yellow. The black in the local

extrema image is the flat pixels. There are 483 maxima and 450 minima

for the photo band of M3A. The descending and ascending components can

be seen in Figure 6.3.3.

It turned out for M3A the ascending components gave better results

over the descending components. A major reason for this was the better

spatial definition of the different areas of the image by the ascending

components. The gravel pits which are dark are almost completely missed

by the descending components, but were picked up fairly well by the

ascending components. One of them just below the center was not picked

up by either set as it did not contain an extremum of either kind. The

pits gave rise to the same problems encountered for the fields of M4A.

Again we are using one or two primitives to define a 'texture' class.

The problem is exaggerated as the size of these regions is larger and

there are more of them. Furthermore the clustering ran into the problem

here that even though the pits are all the same class, their sizes

differed tremendously. Thus when the size attribute was used, the

regions usually remained separate. Grouping only took place when the

size was not included. This is an example of an attribute acting

detrimentally. Size and shape properties for these large regions are

also affected by picture edges and thus would be questionable to use.

For example the pit at the bottom right is cut by the picture edge and

has an artifical shape.

The creek also presented similar problems, though it is easily

apparent to the eye. Again it has very little texture and very few

extrema that define it. An examination of Figure 6.3.3 shows that we
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(a) Radar band Nb Photo band

Figure 6.3.1. Image M3A. Size 128x128.

(a) Local DOx window) (b) True

Figure 6.3.2. Relative maxima (green) and minima (red) for
the photo band of M,3A.

(a) Descending Components (b) Ascending Components

Figure 6.3.3. Unique reachability sets for the photo band ofM3A. 483 and 450 regions respectively.
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pick up more of the bank than we do of the river, owing to its brighter

definition.

Processing with the size and maximum height properties on the

descending components, which were the best for M4A, is shown in Figure

6.3.4. This is quite poor as there is very little definition for the

major regions. The result is the uncontrolled growth of some of the

clusters into the large unclassified area of the gravel pits and the

river regions. The image contains eight clusters. A better picture is

shown in Figure 6.3.5. Based on the average gray tone property this

image has four c'*-ters. There is still not a good definition of the

pits but somL uistinctlon [Ids been achieved for the slightly differing

areas of the residential part. The school area which is the bright spot

just left of the center of the image was kept quite separate from the

rest of the residential tract, but unfortunately was confused with the

bright levels of the river region.

Two examples of processing with the ascending components are shown

in the next two figures. Figure 6.3.6 shows seven groups based on the

number of levels and the average gray tone properties. The definition

of the pits and the river is much better. However merging has taken

place with parts of the residential zone. Figure 6.3.7 shows the

results of using three properties: maximum level, minimum level and the

average level. It is similar to the previous one but was unable to get

all the pits together. There are eight classes on this image.

Processing on the radar band was also performed for this image.

For comparison Figures 6.3.8 and 6.3.9 show the local and true extrema

and the corresponding reachability sets. As before there are fewer
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Clustered Image Generalised Image

Figure 6.3.4. Descending components clustering on photo band
of M3A. Properties 1 and 2. Eight Clusters.

C1lustered Image Generalised Image

Figure 6.3.5. Descending components clustering on photo band
of M34A. Property 5. Four Clusters.
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Clustered Image Generalised Image

Figure 6.3.6. Ascending components clustering on photo band
of M3A. Properties 4 and 5. Seven Clusters.

t 'I

Lai

Clustered Image Generalised Image

Figure 6.3.7. Ascending components clustering on photo band
of M3A. Properties 2, 3 and 5. Eight
Clusters.
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(a) Local (3x3 window) (b) True

Figure 6.3.8. Relative maxima (green) and minima (red) for
the radar band of M3A.

(a) Descending Components (b) Ascending Components

Figure 6.3.9. Unique reachability sets for the radar band of
M3A. 274 and 226 regions respectively.

~A

Clustered Image Generalised Image

Figure 6.3.10. Ascending components clustering on radar band
of M3A. Property 2. Four Clusters.
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number than those from the photo band and the sets are larger in size.

The image contains 274 descending and 226 ascending components. The

processing results were not very impressive. One example is shown in

Figure 6.3.10. It is based on the maximum gray level on the ascending

components image. It has four classes. Only a few major areas can be

identified.

6.4 Processing Image 'M6A'

M6A is a subsection of the sixth ETL image. This image is over a

section of Oakland, Ca. and is 200 x 200 pixels in size. The image is

shown in Figure 6.4.1. Owing to its larger size, it and all of its

processed results were viewed at half the scale (on the TV monitor),

compared to images M4A and M3A. The image was chosen to see how well

the algorithm could distinguish between different man-made textures.

The picture contains some houses in city blocks at the top. These show

as fine texture in the top area and other parts of the image. Two

railway lines run across the bottom part and are surrounded by large

buildings.

Figure 6.4.2 shows the local and true extrema. In Figure 6.4.3 we

have the reachability sets. There are 1152 maxima and 1146 minima

regions for the photo band. An interesting fact was noted in the local

extrema image of Figure 6.4.2. In the original image the city blocks

are defined by streets which run at an angle of about 23 degrees east

of the vertical. In the local extrema image this inclination is not

apparent. Instead there is a slight pattern of straight lines about 6

degrees west of the vertical! The pattern disappears in the true

extrema image with the pattern of the original inclination reappearing
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(a) Radar band (b) Photo band

Figure 6.4.1. Image M6A. Size 200x200.

(a) Local (3x3 window) (b) True

Figure 6.4.2. Relative maxima (green) and minima (red) for
the photo band of M6A.

(a) Descending Components (b) Ascending Components

Figure 6.4.3. Unique reachability sets for the photo band of
M6A. 1152 and 1146 regions respectively.
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siightly. The original pattern is readily apparent in the reachability

set images. There was no clear explanation for this.

Some examples of processing with the descending and ascending

components are given in the next set of figures. Figure 6.4.4 shows the

results of processing attributes 1 and 2, the size and maximum height.

This is on the descending components image. There are thirteen clusters

shown on this. Of these seven contain eight or fewer regions out of the

original 1152 regions. Figure 6.4.5 shows the clustering process which

used only the maximum height property. The picture has five classes.

In both of these the city blocks come out pretty well as they constitute

a well defined texture. Few individual buildings were also

distinguishable. The railway lines which were so well defined on the

reachability sets were however always lost. They merged with the

residential area no matter which properties were being used. These and

other linear features are hard to extract, as it is hard to define

texture on them. Using shape and orientation features could perhaps

keep them separate.

In Figures 6.4.6 and 6.4.7 we have two runs on processing the

ascending components. The first was on four properties: size, maximum

height, number of levels and the average gray tone. It has sixteen

classes of which ten consisted of four or fewer regions. The railway

lines were again absorbed by the residential class, but the buildings

between them were quite distinct. Figure 6.4.7 shows a clustering

example with ten classes, based on the maximum, minimum and the average

level properties. Five of these are small clusters. The residential

area is still two sections which correspond in part to the finer and
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Clustered Image Generalised Image

Figure 6.4.4. Descending components clustering on photo band
of M6A. Properties 1 and 2. Thirteen
Clusters.

PI

Clustered Image Generalised Image

Figure 6.4.5. Descending components clustering on photo band
of M6A. Property 2. Five Clusters.
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Clustered Image Generalised Image

Figure 6.4.6. Ascending components clustering on photo band
of M6A. Properties 1, 2, 4 and 5. Sixteen
Cl usters.

Clustered Image General ised Image

Figure 6.4.7. Ascending components clustering on photo band
of M6A. Properties 2, 3 and 5. Teti Clusters.

139



(I

coarser textures of that domain.

No processing was done with radar band for this image.

6.5 Processing Image 'MIA'

The fourth image presented here is from the first ETL image. It is

again 128 x 128 pixels in size. The image is located at the southern

tip of Crystal Springs reservoir, west of San Carlos, Ca. It was chosen

for its wooded hillside or forest textures which cover most of the top

and left parts of the image. In the bottom right quadrant there is a

beach and a little bit of the lake. Between the beach and the hillside

is another swath of land refered to here as the upper beach. It

contains a lighter density of trees and is a low lying area of the

hillside.

Both the radar and photo bands were orocessed. Owing to the

different acquisition dates the radar image shows a larger water area

than the photo image. This can be seen in Fiqure 6.5.1 which shows both

these bands. Figure 6.5.2 shows both the local and true extrema for the

photo band, while Figure 6.5.3 shows the reachability sets. There are

670 descending and 593 ascending components on this image.

The image is quite difficult to analyse as the changes in the

texture of the forest if any are quite subtle. Also parts of the photo

image are quite dark making it hard to see certain regions. The

algorithm performed quite well however. The radar band on this image

is quite bright, a fact which is reflected in the processing of that

data.

On the photo band the ascending components clustering was not too

good and the best result obtained is shown in Figure 6.5.4. This image
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(a) Radar band (b) Photo band

Figure 6.5.1. Image MIA. Size 128x128.

(a) Local (3x3 window) (b) True

Figure 6.5.2. Relative maxima (green) and ninima (red) for
the photo band of MIA.

!I

(a) Descending Components (b) Ascending Components

Figure 6.5.3. Unique reachability -: ts for the photo band of
MIA. 670 and 593 rp-ions respectively.
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has seven classes. The clustering was done using the size and maximum

height properties. Most of the area came out as one class. The sea was

merged with the forest as they are both equally dark. Only the

immediate beach came out as one separate class. The upper beach is

patchy. The few isolated regions in the forest correspond to the large

size ascending components regions (see Figure 6.5.3). They could

not be clustered with the many smaller sized regions of the forest

area.

The descending components clustering was quite good except for the

sea which came out in two parts. Two iterations are shown in Figure

6.5.5. These are based on the maximum hetght attribute. In Figure

6.5.5a there are six classes. These reflect quite closely the different

regions of the image. The forest area is in two parts. The light blue

on the green correspond to the bright ridges that can be seen on the

photo band. The upper beach came out quite well, while the main beach

is in two segments. Only the sea was poor. As may be seen from the

descending components image (Figure 6.5.3), there are very few

primitives defining the dark flat area. This is of course the same

problem encountered in previous images.

In the next iteration, Figure 6.5.5b, the forest has been reduced

to one category. This image contains four classes. The sea is still

broken and now partly merged with the forest as they are both quite

dark. Overall though it is a good match up on shapes of the classes.

While the radar results are not as pleasing as those from the photo

band, the algorithm again performed well. As mentioned before the radar

image was taken at a different date and shows more water. The beach and
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Clustered Image Generalised Image

Figure 6.5.4. Ascending components clustering on photo band
of MlA. Properties 1 and 2. Seven Clusters.

Clustered Image Generalised Image
(a) Six Clusters.

Clustered Image Generalised Image
(b) Four Clusters.

Figure 6.5.5. Descending components clustering on photo band
of MIA. Property 2. Two iterations.
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I the upper beach areas are not distinct at all. Furthermore it is quite

noisy. This actually was good as it resulted in many more extrema than

the photo band, enabling us, among other things, to get a better

definition of the sea area. Figure 6.5.6 shows these and in Figure

6.5.7 we have the corresponding reachability sets. There are 813 maxima

and 881 minima in this band.

In Figure 6.5.8 we have the clustering based on the size and the

maximum height property for the descending components of the radar band.

This image has five groups. It is hard to separate different texture

regions on this band. The different colors here show more the different

brightness levels as there is not too much variation in the sizes. The

match is fairly good. The light blue and green correspond to the

brighter areas, while the purple and pink correspond to the much darker

regions. The sea here has more body, but is still merged with the dark

areas of the forest.

Figure 6.5.9 show another clustering session on the descending

components. This is based on the minimum gray level attribute. There

are four classes in this image. It turned out a little better. Again

the green and light blue are the brighter tracts and the purple the

darker ones on the radar image.

Finally in Figure 6.5.10 we have a result on processing the

ascending components for the radar data, based on the maximum height

property. This image also has four classes. It is not as good as the

previous one as the definition of the sea is bad. However the shading

patterns of the forest are still represented faithfully.
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(a) Local (3x3 window) (b) True

Figure 6.5.6. Relative maxima (green) and minima (red) for
the radar band of MIA.

(a) Descending Components (b) Ascending Components

Figure 6.5.7. Unique reachability sets for the radar band of
MIA. 813 and 881 regions respectively.
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Clustered Image General ised Image

Figure 6.5.8. Descending components clustering on radar band
of MIA. Properties 1 and 2. Five Clusters.

Clustered Image Generalised Image

Figure 6.5.8. Descending components clustering on radar band

of MIA. Propertie 1 n3 . F ve Clusters.

Clustered Image General ised Image

Figure 6,5.9. Dscending components clustering on radar band

of MIA. Property 2. Four Clusters.
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7.0 CONCLUSION AND RECOMMENDATIONS

In the last few chapters we looked at a few techniques which used

image extrema and the reachability set primitives for quantifying

texture. Our goal was to examine the properties of these primitives and

develop schemes to segment images based only on texture. To this end

the experiments of Chapters 4 and 6 were quite successful, although not

without problems. In this final section we will briefly review some of

these problems and at the same time look at suggestions for further

work.

Segmentation based on the density images of Chapter 4 is not very

evident and it wasn't expected to be. The extrema density is a weak

texture measure and is unlikely it will give rise to good direct

segmentation. It does however separate regions of fine and coarse

texture quite well and has been successfully used in texture

discrimination experiments (Mitchel et al 1977, 1978). The main aim

here was to see how well it suited up to other measures such edge

density, and was found to be generally comparable. Its main

segmentation application lies mainly as a texture discriminator band in

a multispectral clustering process. Its advantage lies in the fact that

it is fast and straight forward to generate.

The properties of the primitives turned out to be more useful for

segmentation. The overall results of clustering based on the property

values of the primitives were quite good. The examples of Chapter 6

show the procedure worked very well in separating regions of different

texture, but had difficulty with the flat homogeneous areas of the

image. As mentioned before this is partly due to the fact that we are
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trying to define the spatial domain of the flat region by one or two

primitives. The reachability set primitives were not intended for

this, as it is not really meaningful in the context in which we are

using them. They are supposed to represent a primitive of the texture

component and not the region itself. Using it for the latter purpose

gives rise to problems. Not only do we have different spatial

definition on the dark and light fields using ascending and descending

components, but some of the properties (size, shape) are no longer

comparable with the texture region primitives. All this of course leads

to errors in clustering and the spatial generalization process.

The inability of the process to handle the flat regions adequately

does not reflect badly on it when we remember that the aim was to use

the primitives to define components of texture. The uniform gray tone

I areas are really regions of no texture and do not fall into the main

class of items we wanted to study.

The flat region problem is not unsolvable. The most direct method

would be to extract the low texture homogenous tone areas by spatial

clustering. There are several ways to do that, Singh (1977) being one

such scheme. Once this is done, the texture image can be segmented

without the homogenous regions. The latter may then be merged with the

segmented picture, either as is or after clustering has been performed

on them. This clustering would be on the tonal properties of the flat

regions. The merging would yield the final classified image.

Another way to tackle this problem is by the use of noise. The

trouble with the flat areas is that there are very few local extrema and

the few that there are result in large ungainly reachability sets. By
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adding a little noise to these regions, we seed the flat area with

; artificial extrema. This not only increases the number of extrema but

also breaks up the original large reachability sets into smaller ones.

The size of these would be a function of the spatial distribution of the

noise pixels. This approach is very well illustrated for the sea region

for the photo and radar bands of MlA (Figures 6.5). The radar band is

quite noisy compared to the photo band and the resulting extrema break

up the sea into many small reachability sets. This gives a better

spatial definition for the sea which was lost for the smoother photo

band.

A more complex problem is the one of two level textures. This

refers to regions which contain two types of textures or in which the

textured is two-layered. An example of this would be fine micro texture

areas arranged in some manner to form a coarse macro texture region.

Another example would be a texture component which consists of an

arrangement of a set of three or more light and dark shapes. These sets

are arranged over a region to give it its texture. The reachability

sets may capture each of these shapes separately when they actually

should be treated together. During the clustering the different

subshapes of each set will cluster with the corresponding subshapes from

other sets. The segmented image will then show the texture region

broken according to the pattern of these subshapes, rather than as one

region as we would like. The problem involves defining not only the

dimensionality of the texture but also size of the basic texture

component. It is partly one of choosing the correct resolution level.

To some degree it can be solved by increasing the thresholds in the
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- clustering, but there is no guarantee in that. At some stage either at

the beginning or on the clustered-segmented image, spatial and global

techniques will have to be applied.

This problem of two level textures was not tackled here and is one

area for further research. About the only example encountered was the

residential area of the M4A. From a broad point of view it represents

a coarse texture area. However on closer examination it shows a pattern

of light and dark shapes. It was noted during most of the processing

runs, that this entire region broke into three or four classes and only

at a very late stage in the clustering did it reduce to a smaller

number. The three of four classes pretty much followed the arrangement

of the shapes, giving the segmented image a patchy appearance.

There are two other points which need further mentioning. One is

the use of the spatial generalization process as this is a potential

source of error. As discussed in Section 6.1 classification errors may

result if in an area the number of extrema are few and the distances

between them large. The spatial generalization could then generate an

artificial growth pattern giving rise to errors in classification. One

such type of area we have already encountered are the flat no texture

regions of the image. However on closer examination, other areas with

slowly varying graytones also exhibit a similar property. They have few

extrema placed far apart, with the result that a lot of pixels fall into

the non-unique reachability class. These are all regions with low

texture some of them being uniform slopes. A more controlled growth

process is then needed for such regions, one that is guided by the

sloped facets and flats of the image. This would however slow the
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growing operation.

The second deals with the number of attributes used in the

clustering. As pointed out earlier, one of the facts that emerged was

that using three or four attributes did not necessarily improve the

result over using one or two. The choice of the attributes here is of

course important but the result is still surprising. The original

hypothesis was that by increasing the number of attributes, we should

do no worse. However this did not hold out. The reasons for it are not

clear and need to be established. This is important if we want to

optimise the clustering performance. Balance has to be achieved between

choosing enough attributes to be able to discriminate between

categories, and at the same time keeping this number small for

computational efficiency.

A natural extension for using the extrema primitives has been

described in Section 5.4. This would be based on the work of Davis et

al (1979) and uses the extrema in the framework of a strong texture

measure. Davis et al used local maxima edge points with directional

properties to generate Generalised Co-occurence Matrices (GCMs). These

were shown to be more powerful than the regular gray level co-occurence

matrices for texture discrimination. It is felt that GCMs based on the

extrema primitives with the attributes of Chapter 5, should work just

as well if not better.

The results of this project show that the extrema and their

derivatives are useful tools for texture analysis. They were used

successfully for both image discrimination as well as segmentation.

Further work however is necessary to reduce errors in classification and
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i eliminate the problems encountered.
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APPENDIX A

COLOR TABLE FOR CLUSTERED IMAGES OF CHAPTER 6.

The list below gives the colors used to show the different classes

of the clustered images of Chapter 6. There are twenty colors for.upto

twenty cluster codes. If an image has more than twenty classes, cluster

codes twenty and higher have the same color.

1 - Light Green 11 - Red

2 - Light Blue 12 - Ochre

3 - Purple 13 - Yellow Green

4 - Pink 14 - Dark Green

5 - Orange 15 - Blue Green

6 - Yellow 16 - Dark Purple

7 - White 17 - Dark Red

8 - Green Blue 18 - Dark Orange

9 - Dark Blue 19 - Dark Yellow Green

- Light Purple 20 - Dark Gray

-Al-



APPENDIX B

IMAGES USED FOR CLUSTERING EXPERIMENTS.
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Image: M4A

Source: ETL files 7 & 8

Image Size: 128 x 128 pixels

Subsection Coordinates
from ETL Image

First & Last Rows: 257 to 384
First & Last Cols: 321 to 448

Acquisition Dates

Photo Band: 21-Oct-71
Radar Band: 16-Mar-71

Approximate Geographic: Section of Union City,
Location North of Newark, Ca.

Image histograms on following pages.
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Image: M3A

Source: ETL files 5 & 6

Image Size: 128 x 128 pixels

Subsection Coordinates
from ETL Image

First & Last Rows: 65 to 192
First & Last Cols: 65 to 192

Acquisition Dates

Photo Band: 21-Oct-71
Radar Band: 16-Mar-71

Approximate Geographic: Section of Freemont, Ca.

Location

Image histograms on following pages.
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1ASS4HISTOGRAM OF 1

M3ARSXS44 BAND 1 RADAR BAND. 11 1
1 INTERVAL SIZE 0.232E+01 1
1 DATA STARTS AT 0 AND ENDS AT 116 1
1 NUMBER OF DATA POINTS 16384 1
1 MEAN= 0.293E+02 VARIANCE= 0.430E+03 11 1
1 PROBABILITY 1
1 0.200 1 1
1 1 1
1 1 1
1 I 1
1 1 11 1 11 !1

1 0.166 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 I 11 1 1
1 0.131 I 1
1 1 1
1 1 1
1 1 1
1 I 1
1 1 1
1 1* 1
1 0.097 I * 1
1 1* 1

1 1* 1
1 I * 1
1 1* 1
1 1* 1
1 .6 * * * 11 0.61* * * 1

11* * * * 1
1 1* * * * * 1
1 1* * ** * .* * 1
1 1* * ********** * 1

1 llIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
1 1 1 I I 1 1
1 12 35 58 81 1 04 1

1DATA VALUES 1f~
1 -1
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HISTOGRAM OF

1 M3ARSXS44 BAND 2 PHOTO BAND. 11 1
1 INTERVAL SIZE 0.210E+01 1
1 DATA STARTS AT 0 AND ENDS AT 105 1
1 NUMBER OF DATA POINTS 16384 1
1 MEAN= 0.373E+02 VARIANCE= 0.470E+03 11 1
1 PROBABILITY 1
-1 0.100 1 1
1 0 1
1 1* 1
1 0 * 1
1 1 * 1
1 * 1
1 1* 11 0.083 1* 1
1 * 1
1 1* 11 1* 1
1 I * 1
1 1* 1
1 I* 1
1 0.066 I-* 1
1 I* 1
1 I * 1
1 1* 1
1 I** * 1
1 1* * 1
1 1* .* 1
1 0.049 I* * 1

1I-* * 1
1 1**1
1 1. * 1
1 I1* **** 1
1 1 * * * ***-**** 1
1 I* * *.********** 1
1 0.031 1* * ************ 1
1 I* * ************* 1
1 1* * * ********* ***** 1
1 1* *** ************* *** * 1
1 1* * ********************* 1
1 .1* * **************-********** 1
1 1* * *****-******************* 1
1 IIIIllIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIII
1 I I I 1 1 1
1 11 32 53 74 95. 1
1 1
1 DATA VALUES 1
1 1

1 ----- - - - - - -- - - - -1
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Image: M6A

Source: ETL files 11 & 12

Image Size: 200 x 200 pixels

Subsection Coordinates
from ETL Image

First & Last Rows: I to 200
First & Last Cols: 313 to 512

Acquisition Dates

Photo Band: 21-Oct-71
Radar Band: 16-Mar-71

Approximate Geographic: Section of Oakland, Ca.
Location

Image histograms on following pages.
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HISTOGRAM OF 11 
1

1 M6ARSXS44 BAND 1 RADAR BAND. 11 
1

1 INTERVAL SIZE 0.254E+01 1
1 DATA STARTS AT 0 AND ENDS AT 127 1
1 NUMBER OF DATA POINTS 40000 1
1 MEAN = 0.544E+02 VARIANCE= 0.678E+03 11 

1
1 PROBABILITY 1
1 0.050 1 1
1 1 1
1 0 1
1 0 . 11 1 

11 1 * * * * 11 I ** * * ** 1
1 0.041 ** * * * * 1
1 1 *3** * * * 11 I * * * * * * * * 1
1 I * **V* * *1 1 * *** * * * * 11 1 * ** *-* * *-* * 11 I * ** * * * * * ** 11 0.033 1 * ** * * * * * ** 11 1 * *-* * * * * * ** 11 1 * * ** * * * * *** 11 1 * * ********** * ** 11 I * ************** ** 11 1 ************** ** * 11 1 ******************* * * 11 0.024 1 ******************* * * 11 1 ******************* -* * 11 1 ******************* ** *

S- ****-**************** * * * 1
1 _ ********************* * * * 1
1 0 I161 ************************* * * 11 1 ************************ * * * I1 0.161 **************************** * ** 11 **-****************************** ** 1
1 I *********************************** * 1

I IIlIIIIIIlIIIlIIIIIIZIIIII III IIIIIIIIIIIIIII 111111
1 1 1 1 1 1 11 13 38 64 89 11 4 11 

11 DATA VALUES 1*1 
1
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1 HISTOGRAM OF 11 1
1 M6ARSXS44 BAND 2 PHOTO BAND.1 1

INTERVAL SIZE 0.208E+01
1 DATA STARTS AT 0 AND ENDS AT 104 1
1 NUMBER OF DATA POINTS 40000 1
1 MEAN= 0.385E+02 VARIANCE= 0.339E+03 11 1
1 PROBABILITY 1
1 0.060 I 1
1 I 11 I 1
1 0 * I1 1 * 1
1 1 4 1
1 1 * 1
1 0.050 1 * 1
1 1 * 11 - -* **** 1 -1 1 ******** * 1
1 1 *******4**- * 1
1 1 *********** * 1
1 1.3 *********** * 1
1 1 4********** * 1
1 1 **********'* * 1
1 I *******-**** * 1
1 I 4*********** * 1
1 1 ***4******** * 1

1 1* ******f*******4** 1
1 0.2 1* ****** ***** 1
1 1 * ****************** 1
1 I * * *** **** **** *** * 1
1 1 * ***************.4** 1

0.019 1***********

1 1, ************************ 1

1 10 31 52 "73 94 1
1 1
1 DATA VALUES 1
1 1
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Iuage: MIA

Source: ETL files 1 & 2

Image Size: 128 x 128 pixels

Subsection Coordinates
from ETL Image

First & Last Rows: 129 to 256
First & Last Cols: 385 to 512

Acquisition Dates

Photo Band: 25-Nov-75
Radar Band: 15-Oct-74

Approximate Geographic: Southern tip of Crystal Springs
Location resevoir, West of San Carlos, Ca.

Image histograms on following pages.
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"1 1
1 HISTOGRAM OF 11 1
1 MlARSXS44 BAND 1 RADAR BAND. 11 1
1 INTERVAL SIZE 0.252E+01 1
1 DATA STARTS AT 1 AND ENDS AT 127 1
1 NUMBER OF DATA POINTS 16384 1
1 MEAN= 0o.460E+02 VARIANCE= 0.502E+03 11 1
1 PROBABILITY 1
1 0.060 1 * 1
1 0 * 1
1 0 * 1
1 0 * 11 1 * * 1
1 I * ** 1
1 I *4** 1
1 0.050 1 * * * 11 1 *4** 1
1 1 * * * * 1
1 I 39 '6* * 1
1 D * * ** 11 I *4* * * * * 1

44 ** * * * * 1
1 0.039 I **** * * * * 1
1 1 ***** *-* * * 1
1 I *4*** * * * * * 1
1 1 4**** * * * * * 1
1 1 4**** * * * * * 1
1 1 ***** * * * * * 1
1 I 4*** 4** * * * ** 1
1 0.029 I * 4***** *** * ** * 1
1 I * *4***** *** * 44 * 1
1 I *4************ * ** * 1

I ****************** * *
1 1 4**4*************** * 1
1 1 *****4*4*********4***** * * 1
1 .1 I **************-************* 1I
1 1 *4***************** * 1
1 1 *4******** ******4***** 1

S1 1 4****************4********* * 1
1 I 4**4*********************** *1

i1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIII
-1 1 I I I I 1

1 14 39 64 89 11 4 1
1 1
1 DATA VALUES 1
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1 HISTOGRAM OF 1

1 MlARSXS44 BAND 2 PHOTO BAND. 11 1

1 INTERVAL SIZE 0-234E+01 1
1 DATA STARTS AT 0 AND ENDS AT 117 1
1 NUMBER OF DATA POINTS 16384 1
1 MEAN 0..271E+02 VARIANCE= 0.519E+03 11 1
1 PROBABILITY 1
1 0.090 I 1
1 1 1
1 I 1
1 0 * * 11 1* * 1
1 0.2* 11 1* * 1
1 0.075 1* * 1
1 D* * 1
1 -* * -* 1
1 i * * * 1
1 1* * * 1
1 1* * ** 1
1 I* * ** 1
1 0.059 1* * ** 1
1 1* * ** 1
1 1* * ** * 1
1 1 * ***-* * 1
1 1 * * **** * 1
1 1* * ***** * 1
1 1* * ***** * 1
1 0.044 1* * ******** 1

S1 1* * ********, 1
1 1* ****-****** 1

1 I************* 1
1 I* ************ 1
1 I"************* * 1

1 I* ***-********* * 1

1 1202835*****82**105 1

1 DATA****VALUES** 1

1 1
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APPENDIX C

COMMAND DuCUMENTATION FOR TEXTURE PROGRAMS.

All the software for the texture project was written in KANDIDATS

format. KANDIDATS is an interactive image processing system developed

at the Remote Sensing Laboratory, at the University of Kansas Center for

Research. It is a general purpose system designed to allow users with

an interest in image analysis, an easy access to a large number of

processing operations. The system has been well documented (Johnson,

1974; Bryant, 1976; Singh, 1977), and only a brief discussion of some

of the features is included here, to help explain the documentation that

follows.

It should be noted that one of the main features of KANDIDATS is

its modular structure. This and the fact that most of KANDIDATS is

written in standard Fortran, makes for easy maintenance, modification

and transportability of the package. Only some system support routines,

such as disk initialisation and I/0, which are particular to a site, are

written in assembly language.

Each algorithm or image operation in KANDIDATS is set up as a

command. It is input into the system as a command string, which is

described below. All the data, whether images or data files, are stored

on disk and are referenced by file names. The command string contains,

ilong with the operation, additional information that is necessary to

- C1 -



perform the command. This includes the file names of the images to be

operated upon and the optional flags for the command. The command

string is decoded by the command string interpreter and the KANDIDATS

monitor then calls the required routines to execute the algorithm.

Each command string has the same simple form and contains basic

information in the following sequence.

1) The name of the operation.
2) The destination device name.
3) The file name for the output image.
4) Optional flags.
5) The source device name.
6) The file names (up to 3) for the input image(s).
7) Optional flags.

This results in the following general command format:

KAN> VERB DEST OTFILE (FLAGS) SOURC INFILE(S) (FLAGS)

where:

KAN> are the KANDIDATS prompt characters.

VERB is the command to be executed.

DEST is the destination device name, if needed.

OTFILE is the output file name.

(FLAGS) is a list of alphabetic characters in parenthesis.
The appearance of each letter in the list causes the
corresponding logical flag (in an array of upto 26
such flags) to be set. The meaning of each flag is
defined by the individual command. Flags are always

optional.

is the delimiter between the destination and
source halves of the command.

SOURC is the source device name, if needed.

INFILE(S) are the input files. Up to three are allowed,
separated by spaces or commas.

(FLAGS) is the same as the first set of flags.

- C2 -
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Some commands do not require all the information described in the

general format. In those cases the irrelevant information is omitted.

Examples of command strings for the various operations are included in

the documentation below.

The images on disk are also maintained in KANDIDATS format, refered

to as Standard Image Format or SIF files. This establishes a common

data structure that allows KANDIDATS commands to access images created

by other commands, with minimum user interaction. A SIF file contains

an identification block for the image, a set of history records and the

image data. It is also set up to accomodate both picture (numeric

image) as well as map (symbolic image) data.

The identification block contains all the basic information about

the image such as size, number of bands, mode, minimum and maximum gray

tone etc. For each operation performed on the image a set of history

or descriptor records are added, which become part of the image file.

These describe the operation that was applied to the image and any

relevant parameters that were used. By listing these out, the user has

a full description of the operations carried out on the image. The

documentation to follow includes a description of this information that

is added by each command. A more detail discussion of a SIF file is

given in Bryant (1976).

For the texture programs another data structure was established.

Called a property file, it is basically a sequential disk file, set up

to hold properties of regions. Its format is as follows. For 'N'

regions and 'M' properties, the length of the file is 'N+2' records,

each of size 'M' words. Records '3' through 'N+2' hold the 'M' property

- C3 -
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values for each of the 'N' regions of the image. Examples of these are

the size of regions, center of mass coordinates or the properties

described in Chapter 5.

The first word of the first record is always thesize ('M') of the

records. If it is greater than one, the rest of the entries are zero.

Record two was included to hold any relevant information that we may

want to keep track off. It usually contains the input band number of

the image that the property file was generated from.

All the sequential data for the texture package is stored in the

above format. This allows for easy examination of the contents of the

files by the PRPRT command.

- C4 -
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Command: MRKNX

Action: Mark the minimum, maximum, transition and flat pixels,
using the 3 x 3 neighborhood.

Destination: Diskpack, output image filename.

Source: Diskpack, input image filename.

Flags: None.

Questions: Band of the input image to use, if more than one.

Comments: A cell is marked according to the following rule:
Mark = 0, if all the cells in the 3 x 3 neighborhood

have the same values.
= 1, if the center pixel is a local minimum.
= 2, if the center pixel is a local maximum.
= 3, if none of the above apply.

The input SIF file must be in line format.

Command String Example:
KAN> MRKNX DP FILEOTSIF DP FILEIN SIF

The local 3 x 3 local extrema of file FILEINSIF will
be cetected and stored in FILEOTSIF.

Desc. Records: Name record:
J MRKNX MM/DD/YY HH:MM FILEOTSIF

FILEINSIF

Parameter record: One integer record.

Integer record:
Entry #1 Band of the input file processed.
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Command: MNMX8

Action: Mark the minimum, maximum and transition regions of
an image.

Destination: Diskpack, output image filename.

Source: Diskpack, input image filenames (two).

Flags: (S) Select either symbolic or numeric bands from input
files 1 and 2. Default is to select only numeric
bands from file 1 and symbolic bands from file 2.

Questions: Bands of input images to use, if more than one.

Comments: Input file I is usually a numeric image and input file
2 is usually the output result of command MRKNX
applied to file 1. Minima flats are marked with 'i',
maxima flats '2' and the transition region pixels with
'3'. Both input and output files are in SIF line
format.

Command String Example:
KAN> MNMX8 DP FILEOTSIF DP FILENiSIF FILEN2SIF

Desc. Records: Name record:
MNMX8 MM/DD/YY HH:MM FILEOTSIF
FILENlSIF FILEN2SIF

Parameter record: One integer record.

Integer record:
Entry #1 Band of input file 1 processed.
Entry #2 Band of input file 2 processed.
Entry #3 Number of scans necessary to mark

the image.

T1T- --. ~ ~--- C6 - I4
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Command: LBLCT

Action: Label pixels in maximal connected regions with unique
values. All pixels in a user selected category

receive labels.

Destination: Diskpack, output image filename.

Source: Diskpack, input image filename.

Flags: (B) Set beginning label.
(C) Recopy output file to optimize number of bits.

Questions: Band of input file to use if more than one.

Comments: The output file is a set of uniquely labeled regions
with no mutually adjacent cells between two different
regions. Both input and output files are in SIF line
format.

Command String Example:
KAN> LBLCT DP FILEOTSIF DP FILEINSIF
LABEL REGIONS MARKED WITH -- 2

All the maximallly connected regions of file FILEINSIF
which have a label '2', will be given unique labels.

Desc. Records: Name record:
LBLCT MM/DD/YY HH:MM FILEOTSIF
FILEINSIF

Parameter record: One integer record.

Integer record:
Entry #1 Band of input file processed.
Entry #2 Beginning label for output file.
Entry #3 Maximum label.
Entry #4 Number of labels.
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Command: REACH

Action: Grow either the minima or maxima labels over their
reachability sets.

Destination: Diskpack, output image filename.

Source: Diskpack, input image filenames (two).

Flags: (A) Ascending reachability from labeled minima.
(D) Descending reachability from labeled maxima.
(S) Select either numeric or symbolic bands from input

files. Default is to select only numeric bands
from file 1 and symbolic bands from file 2.

Questions: Bands of the input images to use, if more than one.

Comments: Flags (A) and (D) are mutually exclusive.
Flag CA) - ascending reachability expects input file 1
to be a numeric band and file 2 to be a symbolic band
of the uniquely labeled minima regions of file 1.
Flag (D) - descending reachability expects file 1 to
be a numeric band and file 2 to be a symbolic band of
the uniquely labeled maxima regions of file 2. Both
input and output files are in SIF line format.

Command String Example:
KAN> REACH DP FILEOTSIF DP FILENlSIF FILEN2SIF (A)

The ascending reachbility sets will be computed and
stored in FILEOTSIF.

Desc. Records: Name record:
REACH MM/DD/YY HH:MM FILEOTSIF
FLENISIF FILEN2SIFIParameter record: One integer record.

Integer record:
Entry #1 Band of input file 1 processed.
Entry #2 Band of output file 2 processed.
Entry #3 Number of scans necessary.
Entry #4 Overlap label.

-C8-
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Command: FRCNT

Action: Generate the frequency (size) counts of regions in a
symbolic image.

Destination: Diskpack, output property file filename.

Source: Diskpack, input image filename.

Flags: None.

Questions: Band of input image to use, if more than one.

Comments: The frequency counts are stored on disk as a property
file. The length is 'N+2', where 'N' is the number of
categories in the image. The first record contains a
'1'. The second holds the band number of the input
image that was processed. It is assumed that each
region is labeled and that they are labeled
consecutively (this is true for output by the LBLCT
command).

Command String Example:

KAN> FRCNT DP FILEOTSEQ DP FILEINSIF

FILEOTSIF is a sequential data file and not a SIF

image. It holds the sizes of the different regions of
FILEINSIF.

Desc. Records: Not applicable.

t
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Command: DSTWT

Action: Distribute a weight over the regions of an image.

Destination: Diskpack, output image filename.

Source: Diskpack, property and input image filenames.

Flags: None.

Questions: Band of input image to use, if more than one.
Weight to be distributed.

Comments: If the weight entered is 'W', each pixel in a region
of size 'f' will get a value of about 'W/f'. For
example if W=100 and f=3, the three pixels will get
values of 33, 33 and 34. The input property file is
usually the output of the 'FRCNT' command. The
property file should have been generated from the
input image band used for this command.

Command String Example:
KAN> DSTWT DP FILEOTSIF DP FILEINSEQ FILEINSIF
ENTER WEIGHT TO BE DIVIDED -- 200

The weight 200 will be divided over the regions of
FILEINSIF according to the size counts specified in
FILEINSEQ.

Desc. Records: Name record.

DSTWT MM/DD/YY HH:MI FILEOTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of categories.
Entry #2 Minimum size value.
Entry #3 Maximum size value.
Entry #4 Weight specified.
Entry #5 Input image band number.
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Command: CMCNT

Action: Generate the center of mass coordinates for the
regions of an image.

Destination: Diskpack, output property file filename.

Source: Diskpack, input image filename.

Flags: None.

Questions: Band of input image to use, if more than one.

Comments: The center of mass coordinates are stored on disk as
a property file. The record size is two for the row
and column coordinates. The first word of the first
record is '2'. The second record holds the input
image band number.

Command String Example:

KAN> CMCNT DP FILEOTSEQ _ DP FILEINSIF

The center of mass coordinates of FILEINSIF are stored
in property file FILEOTSEQ.

Desc. Records: Not applicable.

-Cli
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Command: CMIMG

Action: Create a center of mass image.

Destinaton: Diskpack, output image filename.

Source: Diskpack, property and input image filenames.

Flags: None.

Questions: None.

Comments: Creates - image with the labels at the center of mass
positions of the regions of the input image. The
property file should have been generated by the CMCNT
command for the image band specified. The image file
is necessary here to establish the size of the output
file.

Command String Example:
KAN> CMIMG DP FILEOTSIF DP FILEINSEQ FILEINSIF

Desc. Records: Name record:
CMIMG MM/DD/YY HH:MM FILEOTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of regions.
Entry #2 Band of input image processed.
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Command: RPCNI

Action: Generate a set of properties for the regions of an
image.

Destination: Diskpack, output property file filename.

Source: Diskpack, input image filenames (two).

Flags: None.

Questions: Band of input images to use, if more than one.

Comments: The first file is the symbolic image file containing
the unique labels for the regions. The second file is
the numeric or gray tone image.

Five properties are extracted. They are:
1) Size of the region.
2) Maximum gray level.
3) Minimum gray level.
4) Number of levels.
5) average gray level.

These properties are stored in a property file with a
record size of five. The second record of this file
holds the input image band numbers that were
processed.

Command Strihg Example:
KAN> RPCNl DP FILEOTSEQ DP FILENISIF FILEN2SIF

Desc. Records: Not applicable.
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Command: PRPWT

Action: Create a property image from property file data.

Destination: Diskpack, output image filename.

Source: Diskpack, property and input image filenames.

Flags: None.

Questions: Band of input image to use, if more than one.

Property number to use from property file.
Multiplicative weight to use.

Comments: Each pixel of a region in the output image contains
a value equal to the property value for the region
times the multiplicative constant. The multiplicative
constant is used to give a larger dynamic range to the
output image graytones. The property file should have
been generated from the input image specified.

Command String Example:
KAN> PRPWT DP FILEOTSIF _ DP FILEINSEQ FILEINSIF

ENTER PROPERTY NUMBER -- 3
ENTER MULTIPLICATIVE WEIGHT -- 5

Property number 3 from the property file will be
chosen. Property values assigned to the regions will
be multiplied by 5.

Desc. Records: Name record:
PRPWT MM/DD/YY HH:MM FILEOTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of categories.
Entry #2 Minimum property value.
Entry #3 Maximum property value.

Entry #4 Multiplicative weight.
Entry #5 Band of input image that was processed.
Entry #6 Column of property file that was processed.
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Command: PRPRT

Action: Display property values from property file.

Destination: Hardcopy, teletype (TT) or line printer (LP).

Source: Diskpack, input property file filename.

Flags: (B) Output a bar graph.
(C) Output for compressed mode on LP.
(D) No from feed for default, 'B' and 'T' flag options.
(E) Get first and last values to graph from user.
(H) Output a histogram.
(L) Use log scale in histogram.
(N) Get titles for graphs from user.
(P) Print property file values (Default).
(R) Graph only non-zero values.
(S) No shift in 'B' flag option.
(T) Output table of counts and probabilities.

Comments: This command allows for the display of property file
data in several forms indicated by the flag options
above. More than one form may be specified for one
command. All the properties in the property file will
be displayed.

Command String Example:
KAN> PRPRT TT DP FILEINSEQ

Print the property values for each region to the
teletype.

KAN> PRPRT LP DP FILEINSEQ (BHNL)

Print property histograms and bargraphs to the line
printer. Ask user for titles for each property. Use
log scale for histogram.

Desc. Records: Not applicable.
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Command: TGR

Action: Perform clustering on property values of a property
file.

Destination: Diskpack, output property file filename.

Source: Diskpack, input property file filename.

Flags: None.

Questions: Frequency component in property file.
Number of components and their selection.
Ask for weighting each component.
Weighting by number of regions instead of by
region size.
Maximum number of groups desired.
Ask if data is to be standardised.

Comments: This command performs the Orbit clustering on the
property table. The output is a property file
containing the cluster codes for the regions of the
input property file. Record two contains the final

I number of clusters. The program is interactive and
asks for thresholds for each iteration. The program

also prints a trace of the processing by default, and

intermediate results if requested, to the line
printer.
'TGR' stands for Texture Grouping.

Command String Example:
KAN> TGR DP FILEOTSEQ DP FILEINSEQ
FREQUENCY COMPONENT NUMBER ? 1
NUMBER OF COMPONENTS ? 2
SELECTION I IS -- 3
WEIGHT THIS COMPONENT (Y/N) ? N
SELECTION 2 IS -- 5
WEIGHT THIS COMPONENT (Y/N) ? Y
WEIGHT BY NO. OF REGIONS INSTEAD OF REGION SIZE (Y/N) ? Y
MAXIMUM NUMBER OF GROUPS DESIRED -- 5
STANDARDISE DATA (Y/N) ? N

The frequency component is the first column of the
property file. Clustering will be performed on
components three and five of the file. Component five
will be weighted by the number of regions in each

cluster. Clustering will continue till the number of
groups is five or less. Data will not be
standardised. Questions for thresholds and displaying
intermediate data will be asked during each clustering
iteration.

Desc. Records: Not applicable.
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Command: RBL

Action: Relabel symbolic image band according to the cluster
codes in a property file.

Destination: Diskpack, output image filename.

Source: Diskpack, input property and image filenames.

Flags: None.

Questions: Band of input image to use,if more than one.

Comments: The command is used to create images from the results
of the clustering operation. The first input file is
the cluster code file and the second is the
corresponding labeled file.

Command String Example:
KAN> RBL DP FILEOTSIF DP FILEINSEQ FILEINFSIF

Desc. Records: Name record:
RBL M1/DD/YY HH:MM FILEOTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of original regions.
Entry #2 Number of clusters.
Entry #3 Band of input image processed.
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CRINC LABORATORIES

Chemical Engineering Low Temperature Laboratory.

Remote Sensing Laboratory

Flight Research Laboratory

Chemical Engineering Heat Transfer Laboratory

Nuclear Engineering Laboratory

Environmental Health Engineering Laboratory

Information Processing Laboratory

Water Resources Institute

Technical Transfer Laboratory

Air Pollution Laboratory

Satellite Applications Laboratory
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